Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures

  • Maria Paola Bonacina
  • Silvio Ghilardi
  • Enrica Nicolini
  • Silvio Ranise
  • Daniele Zucchelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)


In the context of combinations of theories with disjoint signatures, we classify the component theories according to the decidability of constraint satisfiability problems in arbitrary and in infinite models, respectively. We exhibit a theory T 1 such that satisfiability is decidable, but satisfiability in infinite models is undecidable. It follows that satisfiability in T 1T 2 is undecidable, whenever T 2 has only infinite models, even if signatures are disjoint and satisfiability in T 2 is decidable.

In the second part of the paper we strengthen the Nelson-Oppen decidability transfer result, by showing that it applies to theories over disjoint signatures, whose satisfiability problem, in either arbitrary or infinite models, is decidable. We show that this result covers decision procedures based on rewriting, complementing recent work on combination of theories in the rewrite-based approach to satisfiability.


Turing Machine Decision Procedure Automate Reasoning Predicate Symbol Cardinality Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to satisfiability procedures: extension, combination of theories and an experimental appraisal. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 65–80. Springer, Heidelberg (2005) Full version available as DI RR 36/2005, Università degli Studi di Verona, CrossRefGoogle Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and Computation 183(2), 140–164 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Audemard, G., Bertoli, P., Cimatti, A., Korniłowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, United Kingdom (1998)Google Scholar
  5. 5.
    Baader, F., Tinelli, C.: Deciding the word problem in the union of equational theories. Information and Computation 178(2), 346–390 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Transactions on Computational Logic (to appear, 2006)Google Scholar
  7. 7.
    Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as semidecision procedures. Theoretical Computer Science 146, 199–242 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Comon, H., Narendran, P., Nieuwenhuis, R., Rusinowitch, M.: Decision problems in ordered rewriting. In: Proc. of LICS 1998, pp. 276–286. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  9. 9.
    Déharbe, D., Ranise, S.: Light-weight theorem proving for debugging and verifying units of code. In: Proc. of SEFM 2003, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  10. 10.
    Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated canonizer and solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-3), 221–249 (2005)MathSciNetGoogle Scholar
  13. 13.
    Middeldorp, A., Zantema, H.: Simple termination revisited. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 451–465. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)MATHCrossRefGoogle Scholar
  15. 15.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier and MIT Press (2001)Google Scholar
  16. 16.
    Odifreddi, P.: Classical recursion theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)MATHGoogle Scholar
  17. 17.
    Oppen, D.C.: Complexity, convexity and combinations of theories. Theoretical Computer Science 12, 291–302 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pigozzi, D.: The join of equational theories. Colloquium Mathematicum 30(1), 15–25 (1974)MATHMathSciNetGoogle Scholar
  19. 19.
    Ranise, S., Ringeissen, C., Tran, D.-K.: Nelson-Oppen, Shostak and the extended canonizer: A family picture with a newborn. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Schulz, S.: E - a brainiac theorem prover. AI Communications 15(2/3), 111–126 (2002)MATHGoogle Scholar
  21. 21.
    Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson-Oppen combination procedure. In: Proc. of FroCoS 1996, pp. 103–120. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  22. 22.
    Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. In: Journal of Automated Reasoning (to appear, 2006)Google Scholar
  23. 23.
    van Dalen, D.: Logic and Structure, 2nd edn. Springer, Heidelberg (1989)MATHGoogle Scholar
  24. 24.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Elsevier, Amsterdam (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maria Paola Bonacina
    • 1
  • Silvio Ghilardi
    • 2
  • Enrica Nicolini
    • 3
  • Silvio Ranise
    • 2
    • 4
  • Daniele Zucchelli
    • 2
    • 4
  1. 1.Dipartimento di InformaticaUniversitá degli Studi di VeronaItalia
  2. 2.Dipartimento di InformaticaUniversitá degli Studi di MilanoItalia
  3. 3.Dipartimento di MatematicaUniversitá degli Studi di MilanoItalia
  4. 4.LORIA & INRIA-LorraineNancyFrance

Personalised recommendations