Advertisement

Flyspeck I: Tame Graphs

  • Tobias Nipkow
  • Gertrud Bauer
  • Paula Schultz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)

Abstract

We present a verified enumeration of tame graphs as defined in Hales’ proof of the Kepler Conjecture and confirm the completeness of Hales’ list of all tame graphs while reducing it from 5128 to 2771 graphs.

Keywords

Java Program Graph Isomorphism High Order Logic Index List Colour Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, G.: Formalizing Plane Graph Theory — Towards a Formalized Proof of the Kepler Conjecture. PhD thesis, Technische Universität München (2006)Google Scholar
  2. 2.
    Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Gonthier, G.: A computer-checked proof of the four colour theorem, available at research.microsoft.com/~gonthier/4colproof.pdf
  4. 4.
    Hales, T.C.: Cannonballs and honeycombs. Notices Amer. Math. Soc. 47, 440–449 (2000)MATHMathSciNetGoogle Scholar
  5. 5.
    Hales, T.C.: A proof of the Kepler conjecture. Annals of Mathematics 162, 1063–1183 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hales, T.C.: Sphere packings, VI. Tame graphs and linear programs. Discrete and Computational Geometry (to appear, 2006)Google Scholar
  7. 7.
    Hales, T.C., McLaughlin, S.: A proof of the dodecahedral conjecture, E-print archive arXiv.org/abs/math.MG/9811079
  8. 8.
    Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs (preliminary report). In: STOC 1974: Proc. 6th ACM Symposium Theory of Computing, pp. 172–184. ACM Press, New York (1974)CrossRefGoogle Scholar
  9. 9.
    Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. In: Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.) Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg (2002), http://www.in.tum.de/~nipkow/LNCS2283/ CrossRefGoogle Scholar
  10. 10.
    S. Obua. Proving bounds for real linear programs in Isabelle/HOL. In J. Hurd, editor, Theorem Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of Lect. Notes in Comp. Sci., pages 227–244. Springer-Verlag, 2005.CrossRefGoogle Scholar
  11. 11.
    Zumkeller, R.: A formalization of global optimization with Taylor models. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tobias Nipkow
    • 1
  • Gertrud Bauer
    • 1
  • Paula Schultz
    • 1
  1. 1.Institut für InformatikTU München 

Personalised recommendations