Geometric Resolution: A Proof Procedure Based on Finite Model Search

  • Hans de Nivelle
  • Jia Meng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)


We present a proof procedure that is complete for first-order logic, but which can also be used when searching for finite models. The procedure uses a normal form which is based on geometric formulas. For this reason we call the procedure geometric resolution. We expect that the procedure can be used as an efficient proof search procedure for first-order logic. In addition, the procedure can be implemented in such a way that it is complete for finding finite models.


Function Symbol Ground Atom Finite Model Proof Procedure Applicable Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bezem, M.: Disproving distributivity in lattices using geometric logic. In: Workshop on Disproving, Non-Theorems, Non-Validity, Non-Provability, informal proceedings, July 2005, pp. 24–31 (2005)Google Scholar
  4. 4.
    Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bry, F., Torge, S.: A deduction method complete for refutation and finite satisfiability. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 122–138. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    de Nivelle, H., de Rijke, M.: Deciding the guarded fragments by resolution. Journal of Symbolic Computation 35(1), 21–58 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: LICS 1999, pp. 295–303 (1999)Google Scholar
  8. 8.
    Kazakov, Y., de Nivelle, H.: A resolution decision procedure for the guarded fragment with transitive guards. In: IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 122–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kim, S., Zhang, H.: ModGen: Theorem proving by model generation. In: Hayes-Roth, B., Korf, R. (eds.) Proceedings of AAAI 1994, pp. 162–167. AAAI Press, Menlo Park (1994)Google Scholar
  10. 10.
    McCune, W.: Models and counter examples MACE2 (system),
  11. 11.
    Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)MATHCrossRefGoogle Scholar
  12. 12.
    Slaney, J.: Scott: A model-guided theorem prover. In: IJCAI 1993, pp. 109–114 (1993)Google Scholar
  13. 13.
    Zhang, J.: Constructing finite algebras with FALCON. Journal of Automated Reasoning 17, 1–22 (1996)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI, pp. 298–303 (1995)Google Scholar
  15. 15.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 295–313. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hans de Nivelle
    • 1
  • Jia Meng
    • 2
  1. 1.Max-Planck Institut für InformatikGermany
  2. 2.National ICT AustraliaAustralia

Personalised recommendations