Canonical Gentzen-Type Calculi with (n,k)-ary Quantifiers

  • Anna Zamansky
  • Arnon Avron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)


Propositional canonical Gentzen-type systems, introduced in [1], are systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a connective is introduced and no other connective is mentioned. [1] provides a constructive coherence criterion for the non-triviality of such systems and shows that a system of this kind admits cut-elimination iff it is coherent. The semantics of such systems is provided using two-valued non-deterministic matrices (2Nmatrices). [14] extends these results to systems with unary quantifiers of a very restricted form. In this paper we substantially extend the characterization of canonical systems to (n,k)-ary quantifiers, which bind k distinct variables and connect n formulas. We show that the coherence criterion remains constructive for such systems, and that for the case of k∈{0,1}: (i) a canonical system is coherent iff it has a strongly characteristic 2Nmatrix, and (ii) if a canonical system is coherent, then it admits cut-elimination.


Function Symbol Predicate Symbol Canonical System Introduction Rule Syllogistic Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron, A., Lev, I.: Canonical Propositional Gentzen-type Systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Avron, A., Lev, I.: Non-deterministic Multi-valued Structures. Journal of Logic and Computation 15, 241–261 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baaz, M., Fermüller, C.G., Zach, R.: Elimination of Cuts in First-order Finite-valued Logics. Information Processing Cybernetics 29(6), 333–355 (1994)Google Scholar
  4. 4.
    Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Labeled Calculi and Finite-valued Logics. Studia Logica 61, 7–33 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carnielli, W.: Systematization of Finite Many-valued Logics through the method of Tableaux. Journal of Symbolic Logic 52(2), 473–493 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ciabattoni, A., Terui, K.: Towards a semantic characterization of cut elimination. Studia Logica 82(1), 95–119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gentzen, G.: Investigations into Logical Deduction. In: Szabo, M.E. (ed.) The collected works of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969)Google Scholar
  8. 8.
    Hähnle, R.: Commodious Axiomatization of Quantifiers in Many-valued Logic. Studia Logica 61, 101–121 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Henkin, L.: Some remarks on infinitely long formulas. In: Infinistic Methods, pp. 167–183. Pergamon Press, Oxford (1961)Google Scholar
  10. 10.
    Krynicki, M., Mostowski, M.: Henkin Quantifiers. In: Krynicki, M., Mostowski, M., Szcerba, L. (eds.) Quantifiers: logics, models and computation, vol. 1, pp. 193–263. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  11. 11.
    Miller, D., Pimentel, E.: Using Linear logic to reason about sequent systems. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 2–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Mostowski, A.: Axiomatizability of some Many-valued Predicate Calculi. In: Fundamenta Mathematicae, vol. 15, pp. 165–190. North Holland, Amsterdam (1961)Google Scholar
  13. 13.
    Salzer, G.: Optimal axiomatizations for multiple-valued operators and quantifiers based on semilattices. In: McRobbie, M.A., Slaney, J. (eds.) CADE 1996. LNCS, vol. 1104, pp. 688–702. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Zamansky, A., Avron, A.: Cut Elimination and Quantification in Canonical Systems. Studia Logica (special issue on Cut Elimination) 82(1), 157–176 (2006)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anna Zamansky
    • 1
  • Arnon Avron
    • 1
  1. 1.Tel Aviv UniversityIsrael

Personalised recommendations