Skip to main content

Combining Type Theory and Untyped Set Theory

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4130))

Abstract

We describe a dependent type theory with proof irrelevance. Within this framework, we give a representation of a form of Mac Lane set theory and discuss automated support for constructing proofs within this set theory. One of the novel aspects of the representation is that one is allowed to use any class (in the set theory) as a type (in the type theory). Such class types allow a natural way of representing partial functions (e.g., the first and second operators on the class of Kuratowski ordered pairs). We also discuss how automated search can be used to construct proofs. In particular, the first-order prover Vampire can be called to solve a challenge problem (the injective Cantor Theorem) which is notoriously difficult for higher-order automated provers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, A., Coquand, T., Norell, U.: Connecting a logical framework to a first-order logic prover. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Andrews, P.B., Bishop, M.: On sets, types, fixed points, and checkerboards. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 1–15. Springer, Heidelberg (1996)

    Google Scholar 

  3. Andrews, P.B., Bishop, M., Brown, C.E.: System description: TPS: A theorem proving system for type theory. In: CADE 2000. LNCS, vol. 1831, pp. 164–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Avron, A.: Formalizing set theory as it is actually used. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 32–43. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Belinfante, J.G.F.: Computer Proofs in Gödel’s class theory with equational definitions for composite and cross. Journal of Automated Reasoning 22, 311–339 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., Wos, L.: Set theory in first-order logic: Clauses for Gödel’s axioms. Journal of Automated Reasoning 2, 287–327 (1986)

    Article  MATH  Google Scholar 

  7. Cantone, D., Zarba, C.G., Ruggeri-Cannata, R.: A tableau-based decision procedure for a fragment of set theory with iterated membership. Journal of Automated Reasoning 34(1), 49–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dowek, G.: Collections, sets and types. Mathematical Structures in Computer Science 9(1), 109–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farmer, W.M.: Stmm: A set theory for mechanized mathematics. J. Autom. Reasoning 26(3), 269–289 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordon, M.J.C.: Set theory, higher order logic or both? In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 191–201. Springer, Heidelberg (1996)

    Google Scholar 

  11. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)

    MATH  MathSciNet  Google Scholar 

  12. Lambek, J., Scott, P.: Introduction to Higher Order Categorial Logic. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  13. Lane, S.M.: Mathematics, Form and Function. Springer, Heidelberg (1986)

    Google Scholar 

  14. Meng, J.: Integration of interactive and automatic provers. In: Carro, M., Correas, J. (eds.) Second CologNet Workshop on Implementation Technology for Computational Logic Systems (2003), http://www.cl.cam.ac.uk/users/jm318/papers/integration.pdf

  15. Nordström, B., Petersson, K., Smith, J.: Martin-löf’s type theory. In: Abramsky, S., et al. (eds.) Handbook of Logic in Computer Science, vol. 5, Oxford University Press, Oxford (2000)

    Google Scholar 

  16. Paulson, L.C.: Set Theory for Verification: II. Induction and Recursion 15(2), 167–215 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Pfenning, F., Schürmann, C.: System Description: Twelf–A Meta-Logical Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Academic Publishers, Norwell (1992)

    MATH  Google Scholar 

  19. Reed, J.: Proof irrelevance and strict definitions in a logical framework. Technical Report 02-153, School of Computer Science, Carnegie Mellon University (2002)

    Google Scholar 

  20. Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 376–380. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Turner, R.: Type inference for set theory. Theor. Comput. Sci. 266(1-2), 951–974 (2001)

    Article  MATH  Google Scholar 

  22. Wiedijk, F.: Is ZF a hack? Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics. Journal of Applied Logic 4 (to appear, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, C.E. (2006). Combining Type Theory and Untyped Set Theory. In: Furbach, U., Shankar, N. (eds) Automated Reasoning. IJCAR 2006. Lecture Notes in Computer Science(), vol 4130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_19

Download citation

  • DOI: https://doi.org/10.1007/11814771_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37187-8

  • Online ISBN: 978-3-540-37188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics