An Interpretation of Isabelle/HOL in HOL Light

  • Sean McLaughlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)


We define an interpretation of the Isabelle/HOL logic in HOL Light and its metalanguage, OCaml. Some aspects of the Isabelle logic are not representable directly in the HOL Light object logic. The interpretation thus takes the form of a set of elaboration rules, where features of the Isabelle logic that cannot be represented directly are elaborated to functors in OCaml. We demonstrate the effectiveness of the interpretation via an implementation, translating a significant part of the Isabelle standard library into HOL Light.


Theorem Prover Type Class Abstract Syntax Proof Assistant Standard Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. To appear in the ACM Transactions on Computational LogicGoogle Scholar
  3. 3.
    Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: B., S., et al. (eds.) Types for Proofs and Programs: International Workshop (2003)Google Scholar
  4. 4.
    Bertot, Y., Castéran, P.: CoqÁrt: The Calculus of Inductive Constructions. In: Texts in Theoretical Computer Science, Springer, Heidelberg (2004)Google Scholar
  5. 5.
    de Bruijn, N.G.: A survey of the project AUTOMATH. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp. 589–606. Academic Press, London (1980)Google Scholar
  6. 6.
    Constable, R.: Implementing Mathematics with The Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  7. 7.
    Howe, D.J.: Importing mathematics from HOL into Nuprl. In: Von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 267–282. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Felty, A.P., Howe, D.J.: Hybrid interactive theorem proving using Nuprl and HOL. In: WebDB 2000. LNCS, pp. 351–365. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Gonthier, G.: A computer-checked proof of the four colour theorem (2005), Available on the Web via
  10. 10.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  11. 11.
    Hales, T.: The Flyspeck Project fact sheet. Project description (2005), available at
  12. 12.
    Hales, T.: The Jordan Curve Theorem in HOL Light. Source code (2005), available at
  13. 13.
    Hales, T.C.: A proof of the the Kepler conjecture. Annals of Mathematics 162, 1065–1185 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. In: Proceedings of the Second Annual Symposium on Logic in Computer Science, Ithaca, NY, pp. 194–204. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  15. 15.
    Harper, R., Pierce, B.C.: Design issues in advanced module systems. In: Pierce, B.C. (ed.) Advanced Topics in Types and Programming Languages, MIT Press, Cambridge (2005)Google Scholar
  16. 16.
    Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Landau, E.: Grundlagen der Analysis. Leipzig, 1930. English translation by F. Steinhardt: Foundations of analysis: the arithmetic of whole, rational, irrational, and complex numbers. A supplement to textbooks on the differential and integral calculus, published by Chelsea; 3rd edition (1966)Google Scholar
  18. 18.
    McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining CVC Lite and HOL Light. In: Armando, A., Cimatti, A. (eds.) Proceedings of the Third Workshop on Pragmatics of Decision Procedures in Automated Reasoning, vol. 144, pp. 43–51 (2005)Google Scholar
  19. 19.
    Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press, Cambridge (1990)Google Scholar
  20. 20.
    Naumov, P.: Importing Isabelle formal mathematics into Nuprl. Technical Report TR99-1734, Cornell University, 26 (1999)Google Scholar
  21. 21.
    Naumov, P., Stehr, M.-O., Meseguer, J.: The HOL/NuPRL proof translator - a practical approach to formal interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame Graphs. Technical report, Institut für Informatik, TU München (January 2006)Google Scholar
  23. 23.
    Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL (submitted, 2006)Google Scholar
  24. 24.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)Google Scholar
  25. 25.
    Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)MATHGoogle Scholar
  26. 26.
    Pfenning, F.: Logical frameworks. In: Handbook of Automated Reasoning, pp. 1063–1147. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  27. 27.
    Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framweork for deductive systems. In: Ganzinger, H. (ed.) Proceedings of the 16th International Conference on Automated Deduction, pp. 202–206 (1999)Google Scholar
  28. 28.
    Pfenning, F., Schürmann, C., Kohlhase, M., Shankar, N., Owre, S.: The Logosphere Project (2005), Project description available at
  29. 29.
    Schürmann, C., Stehr, M.-O.: An Executable Formalization of the HOL/NuPRL Connection in Twelf. In: 11th International Conference on Logic for Programming Artificial Intelligence and Reasoning (2005)Google Scholar
  30. 30.
    Stehr, M.-O., Naumov, P., Meseguer, J.: A proof-theoretic approach to the HOL-NuPRL connection with applications to proof-translation. In: WADT/CoFI (2001)Google Scholar
  31. 31.
    Weis, P., Leroy, X.: Le langage Caml. InterEditions (1993), see also the CAML Web page:
  32. 32.
    Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  33. 33.
    Whitehead, A.N., Russell, B.: Principia Mathematica, vol. 3. Cambridge University Press, Cambridge (1910)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sean McLaughlin
    • 1
  1. 1.Carnegie Mellon University 

Personalised recommendations