Virtual Coordinates with Backtracking for Void Traversal in Geographic Routing

  • Ke Liu
  • Nael Abu-Ghazaleh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4104)


Geographical routing protocols have several desirable features for use in ad hoc and sensor networks but are susceptible to voids and localization errors. Virtual coordinate systems which overlay a coordinate system on the nodes offer an alternative that is more resilient to localization errors. However, we show that it is vulnerable to different forms of the void problem where packets reach nodes with no viable next hop in the forwarding set. In addition, it is possible for nodes with the same coordinates to arise at different points in the network in the presence of voids. This paper identifies and analyzes these problems. It also compares several existing routing protocols based on Virtual Coordinate systems. Finally, we propose a routing algorithm that uses geographic routing in the greedy phase and virtual coordinates with backtracking to overcome voids and achieve high connectivity in the greedy phase with higher overall path quality and more resilience to localization errors. We demonstrate these properties using extensive simulation studies.


Sensor Network Localization Error Average Path Length Radio Range Reference Node 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perkins, C.E., Royer, E.M.: Ad hoc On-Demand Distance Vector Routing. In: Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications (February 1999) Google Scholar
  2. 2.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks, DIALM 1999 (August 1999)Google Scholar
  3. 3.
    Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless Networks, MobiCom (2000)Google Scholar
  4. 4.
    Fang, Q., Gao, J., Guibas, L.: Locating and Bypassing Routing Holes in Sensor Networks. In: INFOCOM 2004 (2004)Google Scholar
  5. 5.
    Fotopoulou-Prigipa, S., McDonald, A.B.: GCRP: Geographic Virtual Circuit Routing Protocol for Ad Hoc Networks, MASS (2004)Google Scholar
  6. 6.
    Kim, Y.-J., Govindan, R., Karp, B., Shenker, S.: Geographic Routing Made Practical. In: The Second USENIX/ACM Symposium on Networked System Design and Implementation (NSDI 2005) (May 2005)Google Scholar
  7. 7.
    He, T., Huang, C., Blum, B., Stankovic, J.A., Abdelzaher, T.: Range-Free Localization Schemes for Large Scale Sensor Networks, MobiCom (2003)Google Scholar
  8. 8.
    Seada, K., Helmy, A., Govindan, R.: On the Effect of Localization Errors on Geographic Face Routing in Sensor Networks. In: IPSN 2004 (2004)Google Scholar
  9. 9.
    Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Journal of Discrete Appl. Math. 70, 217–229 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic Routing without Location Information. In: MobiCom 2003 (2003)Google Scholar
  11. 11.
    Newsome, J., Song, D.: GEM: Graph EMbedding for Routing and Data-Centric Storage in Sensor Networks Without Geographic Information. In: SenSys 2003 (November 2003)Google Scholar
  12. 12.
    Papadimitriou, C.H., Ratajczak, D.: On a Conjecture Related to Geometric Routing. In: ALGOSENSORS 2004 (2004)Google Scholar
  13. 13.
    Moscibroda, T., O’Dell, R., Wattenhofer, M., Wattenhofer, R.: Virtual Coordinates for Ad hoc and Sensor Networks. In: ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC) (October 2004)Google Scholar
  14. 14.
    Cao, Q., Abdelzaher, T.F.: A Scalable Logical Coordinates Framework for Routing in Wireless Sensor Networks. In: RTSS 2004 (2004)Google Scholar
  15. 15.
    Nicol, D.M., Goldsby, M.E., Johnson, M.M.: Simulation Analysis of Virtual Geographic Routing. In: Proceedings of the 2004 Winter Simulation Conference (2004)Google Scholar
  16. 16.
    Caruso, A., Chessa, S., De, S., Urpi, A.o.: GPS Free Coordinate Assignment and Routing in Wireless Sensor Networks. In: INFOCOM 2005 (2005)Google Scholar
  17. 17.
    Wattenhofer, M., Wattenhofer, R., Widmayer, P.: Geometric Routing Without Geometry. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 307–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica, I.: Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets. In: NSDI 2005 (2005)Google Scholar
  19. 19.
    Fang, Q., Gao, J., Guibas, L.J., de Silva, V., Zhang, L.: GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks. In: INFOCOM 2005 (2005)Google Scholar
  20. 20.
    Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Niculescu, D., Nath, B.: Ad Hoc Positioning System (APS). In: GlobalCom 2001 (2001)Google Scholar
  22. 22.
    Hightower, J., Borriella, G.: Location Systems for Ubiquitous Computing. IEEE Computer V34, 57–66 (2001)Google Scholar
  23. 23.
    Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical Robust Localization over Large-Scale 802.11 Wireless Networks. In: MobiCom 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ke Liu
    • 1
  • Nael Abu-Ghazaleh
    • 1
  1. 1.Computer Science DepartmentBinghamton UniversityBinghamton

Personalised recommendations