Advertisement

New Service Differentiation Model for End-to-End QoS Provisioning in Wireless Ad Hoc Networks

  • Joo-Sang Youn
  • Seung-Joon Seok
  • Chul-Hee Kang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4104)

Abstract

In this paper, a new QoS model is presented for end-to-end service provisioning in wireless ad hoc networks. Many previous works focus on the packet scheduling mechanism using multiple service classes implemented for traffic prioritization based service differentiation. However, this paper concentrates on a scheme for dynamically selecting a proper one among several forwarding classes that perform different service rate according to service requirements. There service requirements include low delay, high throughput, and low loss. The proposed solution is a new QoS provisioning model called Dynamic Hop Service Differentiation (DHSD). This model supports soft QoS provisioning to reduce network overhead and wireless PHB (WPHB) to achieve the end-to-end QoS required by applications. The proposed QoS model is evaluated using OPNET simulation. We show that this model outperforms both best-effort and strict priority service models in wireless ad hoc network environments.

Keywords

Video Service Voice Service Contention Window Size Strict Priority Backlog Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, S.B., Ahn, G.S., Campbell, A.T.: Improving UDP and TCP performance in mobile ad hoc networks with INSIGNIA. IEEE Commun. Mag. 39(6), 156–165 (2001)CrossRefGoogle Scholar
  2. 2.
    Lo, A., Xiao, H., Chua, K.C.: A Flexible Quality of Service Model for Mobile Ad hoc networks. In: IEEE Vehicular Technology Conference Fall 2000, pp. 445–449 (May 2000)Google Scholar
  3. 3.
    Veres, A., Ahn, G., Campbell, A.T., Sun, L.: SWAN: Service Differentiation in Stateless Wirelass Ad hoc network. In: Conference on Computer Communications (IEEE infocom) (June 2002)Google Scholar
  4. 4.
    Clark, D., Fang, W.: Explicit allocation of best-effort packet delivery service. Networking, IEEE/ACM Transactions 6(4), 362–373 (1998)CrossRefGoogle Scholar
  5. 5.
    Wang, K.C., Ramanathan, P.: QoS assurances through class selection and proportional differentiation in wireless networks. IEEE J. Sel. Areas Commun. 23(3), 573–584 (2005)CrossRefGoogle Scholar
  6. 6.
    Yeh, C.H., Mouftah, H.T., Hassanein, H.: Signaling and QoS guarantees in mobile ad hoc networks. In: Proc. IEEE Int. Conf. Commun., vol. 5, pp. 3284–3290 (April 2002)Google Scholar
  7. 7.
    Xue, J., Stuedi, P., Alonso, G.: ASAP: an adaptive QoS protocol for mobile ad hoc networks. In: Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., pp. 2616–2620 (September 2003)Google Scholar
  8. 8.
    Ying, Z., Ananda, A.L., Jacob, L.: A QoS enabled MAC protocol for multi-hop ad hoc wireless networks. In: Proc. IEEE Int. Conf. Perform., Comput., Commun., April 2003, pp. 149–156 (2003)Google Scholar
  9. 9.
    Sobrinho, J.L., Krishnakumar, A.S.: Quality-of-service in ad hoc carrier sense multiple access wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1353–1368 (1999)CrossRefGoogle Scholar
  10. 10.
    Deng, J., Chang, R.S.: A priority scheme for IEEE 802.11 DCF access method. IEICE Trans. Commun., E82-B(1), 96–102 (1999)Google Scholar
  11. 11.
    Coutras, C., Gupta, S., Shroff, N.B.: Scheduling of real-time traffic in IEEE 802.11 wireless LANs. Wireless Netw. 6, 457–466 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Banchs, A., Perez, X.: Providing throughput guarantees in IEEE 802.11 wireless LAN. In: Proc. Wireless Communications Networking Conf., vol. 1, pp. 130–138 (2002)Google Scholar
  13. 13.
    Lei, C., Heinzelman, W.B.: QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE J. Sel. Areas Commun. 23(3), 561–572 (2005)CrossRefGoogle Scholar
  14. 14.
    The IEEE P802.11 Task Group E. The IEEE 802.11e. [Online], Available: http://grouper.ieee.org/groups/802/11/
  15. 15.
  16. 16.
    Xiao, Y., Li, H.: Local data control and admission control for QoS support in wireless ad hoc networks. Vehicular Technology, IEEE Transaction 53(5), 1558–1572 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Iera, A., Ruggeri, G., Tripodi, D.: An Algorithm for Dynamic Priority Assignment in 802.11e WLAN MAC Protocols. In: de Souza, J.N., Dini, P., Lorenz, P. (eds.) ICT 2004. LNCS, vol. 3124, pp. 1267–1273. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joo-Sang Youn
    • 1
  • Seung-Joon Seok
    • 2
  • Chul-Hee Kang
    • 1
  1. 1.Department of Electronics and Computer EngineeringKorea UniversitySeoulKorea
  2. 2.Dept. of Computer EngineeringKyungnam UniversityKyungnamKorea

Personalised recommendations