Advertisement

Finding Deformable Shapes by Point Set Matching Through Nonparametric Belief Propagation

  • Xiao Dong
  • Guoyan Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)

Abstract

This paper addresses the problem of finding a deformable shape by matching a point distribution model to the observation. A probabilistic graphical model is built for the point distribution model. The point correspondence and optimal model parameters are found by carrying out nonparametric belief propagation on the graphical model. Experiments on a point distribution model of the proximal model verified the idea.

Keywords

point distribution model nonparametric belief propagation graph matching Bayesian network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical report, University of Manchester, UK (2004)Google Scholar
  2. 2.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analyis and Machine Intelligence 24(24), 509–522 (2002)CrossRefGoogle Scholar
  3. 3.
    Coughlan, J., Ferreira, S.: Finding Deformable Shapes Using Loopy Belief Propagation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 453–468. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Rangarajan, A., Coughlan, J., Yuille, A.L.: A Bayesian network framework for relational shape matching. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV) (2003)Google Scholar
  5. 5.
    Caetano, T.S., Caeli, T., Barone, D.A.C.: An optimal probabilistic graphical model for point set matching. Technical Report TR 04-03, University of Alberta, Edmonton, Alberta Canada (February 2004)Google Scholar
  6. 6.
    Hamze, F., de Freitas, N.: Hot coupling: a particle approach to inference and normalization on pairwise undirected graphs of arbitrary topology. Neural Information Processing Systems (NIPS) (2005)Google Scholar
  7. 7.
    Ma, B., Ellis, R.E.: Surface-based registration with a particle filter. In: Seventh International Conference on Medical Image Computing and Computer Assisted Intervention, France (2004)Google Scholar
  8. 8.
    Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(4), 515–519 (2004)CrossRefGoogle Scholar
  9. 9.
    Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: International Conference on Shape Modeling and Applications (SMI) 2006, Matsushima, Japan (in press)Google Scholar
  10. 10.
    Zinber, T., Schmidt, J., Niemann, H.: A refined ICP algorithm for robust 3D correspondence estimation. In: Proceedings of International Conference on Image Processing (2003)Google Scholar
  11. 11.
    Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 44–51 (2000)Google Scholar
  12. 12.
    Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: IEEE Workshop on Mathematical Methods in Biomecical Image Analysis (MMBIA), pp. 190–197 (2000)Google Scholar
  13. 13.
    Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 605 (2003)Google Scholar
  14. 14.
    Williams, J.L., Maybeck, P.S.: Cost-function-based Gaussian mixture reduction for target tracking. In: Sixth International Conference on Information Fusion, Cairns, Australia, pp. 1047–1054 (2003)Google Scholar
  15. 15.
    Ihler, A., Sudderth, E., Freeman, W., Willsky, A.: Efficient multiscale sampling from products of Gaussian mixtures. Neural Information Processing Systems 17 (2003)Google Scholar
  16. 16.
    Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture of Gaussians. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 2 (2005)Google Scholar
  17. 17.
    Caetano, T.S., Caeli, T., Barone, D.A.C.: A comparison of junction tree and relaxation algorithm for point matching using different distance metrics. Technical Report TR 04-03, University of Alberta, Edmonton, Alberta Canada (February 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiao Dong
    • 1
  • Guoyan Zheng
    • 1
  1. 1.MEM Research CenterUniversity of BernBernSwitzerland

Personalised recommendations