An Improved Statistical Approach for Cerebrovascular Tree Extraction

  • J. T. Hao
  • M. L. Li
  • F. L. Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)


In this paper, we present a statistical approach to aggregating shape and speed information for whole cerebrovascular tree extraction in time-of-flight magnetic resonance angiography (TOF-MRA). By embedding Frangi’s vesselness measure into the prior mopodel, the newly porposede segmentation framework can greatly improve the capability of detecting the tiny vessel branch.


Statistical segmentation Time-of-flight Hessian matrices maximum a posteriori(MAP) estimation Markov Random field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirbas, C., Quek, F.: Vessel Extraction Techniques and Algorithms:A Survey Bioinformatics and Bioengineering. In: Proceedings of the Third IEEE Symposium, March 10-12, pp. 238–245 (2003)Google Scholar
  2. 2.
    Suri, J.S., Liu, K., et al.: A Review on MR Vascular Image Processing: Skeleton Versus Nonskeleton Approaches: Part II. IEEE Transactions On Information Technology In Biomedicine 6(4), 338–350 (2002)CrossRefGoogle Scholar
  3. 3.
    Hassouna, M.S., Farag, A.A.: Cerebrovascular segmentation from TOF using stochastic models. Medical Image Analysis 10, 2–18 (2006)CrossRefGoogle Scholar
  4. 4.
    McLachlan, J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dempster, A., Laird, N., Rubin, D.: Maximum. likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. B, 1–38 (1977)Google Scholar
  6. 6.
    Wilbur, W.C.K., Albert, C.C.S.: Bayesian Image Segmentation Using Local ISO-Intensity Structural Orientation. IEEE Trans. Image Processing 14(10) (2005)Google Scholar
  7. 7.
    Meier, T., Ngan, K.N., Crebbin, G.: A robust Markovian segmentation based on highest confidence first (HCF) [J]. In: IEEE Int. Conf. on Image Processing, vol. 1, pp. 216–219 (1997)Google Scholar
  8. 8.
    Chung, A.C.S., Noble, J.A., Summers, P.: Fusing speed and phase information for vascular segmentation of phase contrast MR angiograms. Med. Image Anal. 6(2), 109–128 (2002)CrossRefGoogle Scholar
  9. 9.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions,and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, 721–741 (1984)CrossRefGoogle Scholar
  10. 10.
    Descoteaux, M., Collins, L., Siddiqi, K.: Geometric Flows for Segmenting Vasculature in MRI: Theory and Validation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 500–507. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis 2(2), 143–168 (1998)CrossRefGoogle Scholar
  12. 12.
    Frangi, A., Niessen, W., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48(3), 259–302 (1985)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. T. Hao
    • 1
  • M. L. Li
    • 1
  • F. L. Tang
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations