Advertisement

Automatic Segmentation of the Aortic Dissection Membrane from 3D CTA Images

  • Tamás Kovács
  • Philippe Cattin
  • Hatem Alkadhi
  • Simon Wildermuth
  • Gábor Székely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)

Abstract

Acute aortic dissection is a life-threatening condition and must be diagnosed and treated promptly. For treatment planning the reliable identification of the true and false lumen is crucial. However, a fully automatic Computer Aided Diagnosis system capable to display the different lumens in an easily comprehensible and timely manner is still not available.

In this paper we present a method that segments the entire aorta and then identifies the two lumens separated by the dissection membrane. The algorithm misdetected part of the membrane in only one of the 15 cases tested, where the aorta has not been significantly altered by the presence of aneurisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sollie, B.H.: Automatic segmentation and registration of CT and US images of abdominal aortic aneurysm using ITK. Masterthesis: Norwegian University of Science and Technology, Norway (2002)Google Scholar
  2. 2.
    Baissalov, R., Sandison, G.A., Donnelly, B.J., et al.: Suppression of high-density artefacts in X-ray CT images using temporal digital subtraction with application to cryotherapy. Phys. Med. Biol. 45, 53–59 (2000)Google Scholar
  3. 3.
    Behrens, T., Rohr, K., Stiehl, H.S.: Robust segmentation of tubular structures in 3-D medical images by parametric object detection and traking. IEEE Trans. Syst. Man Cybern. B 33, 554–561 (2003)CrossRefGoogle Scholar
  4. 4.
    Kovács, T., Cattin, P., Alkadhi, H., Wildermuth, S., Székely, G.: Automatic segmentation of the vessel lumen from 3D CTA images of aortic dissection. In: Bildverarbeitung für die Medizin, pp. 161–165 (2006)Google Scholar
  5. 5.
    Sato, Y., Westin, C., Bhalerao, A., et al.: Tissue classification based on 3d local intensity structures for volume rendering. IEEE Trans. Vis. Comput. Graph. 6, 160–180 (2000)CrossRefGoogle Scholar
  6. 6.
    Krissian, K., Malandain, G., Ayache, N., et al.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80, 130–171 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., et al.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Descoteaux, M., Audette, M., Chinzei, K., et al.: Bone enhancement filtering: Application to sinus bone segmentation and simulation of pituitary surgery. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 9–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Koller, T., Gerig, G., Szekely, G., et al.: Multiscale detection of curvilinear structures in 2D and 3D image data. In: ICCV, pp. 864–869 (1995)Google Scholar
  10. 10.
    Felkel, P., Wegenkittl, R., Kanitsar, A.: Vessel tracking in peripheral cta datasets – an overview. In: SCCG 2001, p. 232 (2001)Google Scholar
  11. 11.
    Sethian, J.: Level Set Methods and Fast Marching Methods, ch. 16. Cambridge Press, Cambridge (1999)Google Scholar
  12. 12.
    Brown, J., Montgomery, K., Latombe, J.C., et al.: A microsurgery simulation system. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 137–144. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Zsemlye, G.: Shape Prediction from Partial Information. PhD thesis, Computer Vision Laboratory, ETH Zurich, Switzerland (2005)Google Scholar
  14. 14.
    Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow, pp. 359–369 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tamás Kovács
    • 1
  • Philippe Cattin
    • 1
  • Hatem Alkadhi
    • 2
  • Simon Wildermuth
    • 3
  • Gábor Székely
    • 1
  1. 1.Computer Vision GroupETH ZurichZurichSwitzerland
  2. 2.Institute of Diagnostic RadiologyUniversity HospitalZürich
  3. 3.Institut fuer RadiologieKantonsspital St. GallenSt. GallenSwitzerland

Personalised recommendations