Advertisement

Simultaneous Estimation of PET Attenuation and Activity Images with Divided Difference Filters

  • Huafeng Liu
  • Yi Tian
  • Pengcheng Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)

Abstract

For quantitative image reconstruction in positron emission tomography attenuation correction is necessary. A common technique used for attenuation correction is based on patient-specific attenuation maps reconstructed from transmission data acquired with external sources. However, the transmission process increases measurement time, costs and radiation exposure, and generates misregistration errors due to patient motion. In this paper, we propose a framework for simultaneous reconstruction of activity distribution together with the attenuation map from emission data alone. The estimation process is accomplished by solving a nonlinear stationary state space model with a divided difference filter. A Zubal digital thorax phantom data is used to demonstrate the benefits of such a reconstruction.

Keywords

Positron Emission Tomography Attenuation Correction Simultaneous Estimation Activity Image Positron Emission Tomography Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, H.H., Swindell, W.: Radiological Imaging: The Theory of Image Formation, Detection, and Processing. Academic Press, San Diego (1981)Google Scholar
  2. 2.
    Zaidi, H., Hasegawa, B.: Determination of the attenuation map in emission tomography. J. Nucl. Med. 44, 291–315 (2003)Google Scholar
  3. 3.
    Fessler, J.A., Ficaro, E.P., Clinthorne, N.H., Lange, K.: Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans. Med. Imag. 16, 166–175 (1997)CrossRefGoogle Scholar
  4. 4.
    Mumcuoglu, E.U., Leahy, R., Cherry, S.R.: Bayesian reconstruction of pet images: Methodology and performance analysis. Phys. Med. Biol. 41, 1777–1807 (1996)CrossRefGoogle Scholar
  5. 5.
    Ollinger, J.M.: Maximum-likelihood reconstruction of transmission images in emission computed tomography via the em algorithm. IEEE Trans. Med. Imag. 13, 89–101 (1994)CrossRefGoogle Scholar
  6. 6.
    TurkingtonT, G.: Introduction to pet instrumentation. J. Nucl. Med. Technol. 29, 4–11 (2001)Google Scholar
  7. 7.
    Bergstrom, M., Litton, J., Eriksson, L., Bohm, C., Blomqvist, G.: Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J. Comput. Assist. Tomogr. 6, 365–372 (1982)CrossRefGoogle Scholar
  8. 8.
    Weinzapfel, B.T., HutchinsG, D.: Automated pet attenuation correction model for functional brain imaging. J. Nucl. Med. 42, 483–491 (2001)Google Scholar
  9. 9.
    Censor, Y., Gustafson, D., Lent, A., Tuy, H.: A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans. Nucl. Sci. 26, 2275–2279 (1979)CrossRefGoogle Scholar
  10. 10.
    Krol, A., Bowsher, J.E., Manglos, S.H., Feiglin, D.H., Tomai, M.P., Thomas, F.D.: An em algorithm for estimating spect emission and transmission parameters from emissions data only. IEEE Trans. Med. Imag. 20, 218–232 (2001)CrossRefGoogle Scholar
  11. 11.
    Nuyts, J., Dupont, P., Stroobants, S., Benninck, R., Mortelmans, L., Suetens, P.: Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans. Med. Imag. 18, 393–403 (1999)CrossRefGoogle Scholar
  12. 12.
    Dicken, V.: A new approach towards simultaneous activity and attenuation reconstruction in emission tomography. Inverse Probl. 15, 931–960 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu, H., Tian, Y., Shi, P.: PET image reconstruction: A robust state space approach. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 197–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Anscombe, F.J.: The transformation of poisson, binomial and negative-binomial data. Biometrika (1948)Google Scholar
  15. 15.
    Nrgaard, M., Poulsen, N., Ravn, O.: Advances in derivative-free state estimation for nonlinear systems. Technical report IMM-REP-1998-15 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Huafeng Liu
    • 1
    • 2
  • Yi Tian
    • 1
    • 2
  • Pengcheng Shi
    • 3
    • 4
  1. 1.State Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhouChina
  2. 2.Zhejiang-California International NanoSystems InstituteHangzhouChina
  3. 3.Key Laboratory of Medical Image ProcessingSouthern Medical UniversityGuangzhouChina
  4. 4.Department of Electrical and Electronic EngineeringHong Kong University of Science and TechnologyHong Kong

Personalised recommendations