Multi-modality Image Registration Using Gradient Vector Flow Intensity

  • Yujun Guo
  • Chi-Hsiang Lo
  • Cheng-Chang Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)


Similarity measure plays a critical role in image registration. Mutual information (MI) has been proved to be a promising measure used widely in multi-modality image registration. However, applying mutual information to original intensities only takes statistical information into consideration, while spatial information is not even considered. In this paper, a novel approach is proposed to incorporate spatial information into MI through gradient vector flow (GVF). Mutual information now is calculated from the GVF-intensity (GVFI) map of the original images instead of their intensity values. Multi-modality brain image registration was performed to test the accuracy and robustness of the proposed method. Experimental results showed that the success rate of our method is higher than that of traditional MI-based registration.


Multimodality registration mutual information gradient vector flow gradient vector flow intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Trans. Med. Imag. 16, 187–198 (1997)CrossRefGoogle Scholar
  2. 2.
    Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal Volume Registration by Maximization of Mutual Information. Med. Imag. Anal. 1, 35–51 (1996)CrossRefGoogle Scholar
  3. 3.
    Rueckert, D., Clarkson, M.J., Hill, D.L.G., Hawkes, D.J.: Non-rigid Registration Using Higher-order Mutual Information in Medical Imaging: Image Processing. In: Proc. SPIE, vol. 3979, pp. 438–447. SPIE, Bellingham (2000)Google Scholar
  4. 4.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image Registration by Maximization of Combined Mutual Information and Gradient Information. IEEE Trans. Med. Imag. 19, 809–814 (2000)CrossRefGoogle Scholar
  5. 5.
    Russakoff, D., Tomasi, C., Rohlfing, T., Maurer Jr., C.R.: Image Similarity Using Mutual Information of Regions. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Holden, M., Griffin, L.D., Saeed, N., Hill, D.L.: Multichannel Mutual Information Using Scale Space. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 797–804. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Butz, T., Thiran, J.P.: Affine Registration with Feature Space Mutual Information. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 549–556. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gan, R., Chung, A.C.: Distance-Intensity for Image Registration. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 281–290. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Luan, H., Qi, F., Shen, D.: Multi-modal Image Registration by Quantitative-Qualitative Measure of Mutual Information (Q-MI). In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 378–387. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEEE Trans. Image Processing 7, 359–369 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. Comput. Vis. 1, 321–331 (1988)CrossRefGoogle Scholar
  12. 12.
    Maintz, J., van den Elsen, P., Viergever, M.: Comparison of Edge-based and Ridge-based Registration of CT and MR Brain Images. Med. Imag. Anal. 1, 151–161 (1998)CrossRefGoogle Scholar
  13. 13.
    Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.: A Comparison of Similarity Measures for Use in 2D-3D Medical Image Registration. IEEE Trans. Med. Imag. 17, 586–595 (1999)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Tian, J.: Image Registration Based on Maximization of Gradient Code Mutual Information. Image Anal. Stereol. 24, 1–7 (2005)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.L., Holmes, C.J., Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom. IEEE Trans. Med. Imag. 17, 463–468 (1998)CrossRefGoogle Scholar
  16. 16.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  17. 17.
    Zhu, Y., Cochoff, S.M.: Likelihood Maximization Approach to Image Registration. IEEE Trans. Image Processing 11, 1417–1426 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yujun Guo
    • 1
  • Chi-Hsiang Lo
    • 2
  • Cheng-Chang Lu
    • 1
  1. 1.Department of Computer ScienceKent State UniversityKentUSA
  2. 2.Department of Electronic EngineeringNational Ilan UniversityIlanTaiwan

Personalised recommendations