A Neighborhood Incorporated Method in Image Registration

  • Chunlan Yang
  • Tianzi Jiang
  • Jianzhe Wang
  • Lian Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)


Mutual information has been widely used in image registration as an effective similarity measure. It has attracted a lot of attention to the effective use of the spatial information. Here we propose a new measure that includes the mean of the neighborhood region of each pixel as one variable of the two-dimension normal distribution assumed in our method. The experimental results show that our method can not only improve the robustness of mutual information, but also reduce the affect of noise in image registration.


Mutual Information Spatial Information Image Registration Pixel Pair Marginal Probability Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med. Biol., R1–R45 (2001)Google Scholar
  2. 2.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  3. 3.
    Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multi-modality image registration based on information theory. In: Proc. of Information Processing in Medical Imaging, pp. 263–274. Kluwer, Norwell (1995)Google Scholar
  4. 4.
    Viola, P., Wells, W.M.: Alignment by maximization of mutual information. In: Proc. of 5th Int. Conf. Computer Vision, Boston, MA, pp. 16–23 (1995)Google Scholar
  5. 5.
    Maintz, J.B.A., Viergever, M.A.: A survey of Medical Image Registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  6. 6.
    Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.: A comparison of similarity measures for use in 2D-3D medical image registration. IEEE Transactions on Medical Imaging 17(4), 586–595 (1999)CrossRefGoogle Scholar
  7. 7.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image Registration by Maximization of Combined Mutual Information and Gradient Information. IEEE Transactions on Medical Imaging 19(8), 809–814 (2000)CrossRefGoogle Scholar
  8. 8.
    Rueckert, D., Clarkson, M.J., Hill, D.L.G., Hawkes, D.J.: Non-rigid registration using higher-order mutual information. In: Proc. SPIE Medical Imaging 2000: Image Processing, San Diego, CA, pp. 438–447 (2000)Google Scholar
  9. 9.
    Holden, M., Griffin, L.D., Saeed, N., Hill, D.L.G.: Multi-Channel Mutual Information Using Scale Space. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 797–804. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer, C.R.: Image Similarity Using Mutual Information of Regions. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Tomazevie, D., Likar, B., Pernus, F.: Multi-Feature Mutual Information. In: Proc. of SPIE, vol. 5370, pp. 143–154 (2004)Google Scholar
  12. 12.
    Sabuncu, M.R., Ramadge, P.J.: Spatial Information in Entropy-Based Image Registration. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 132–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chunlan Yang
    • 1
  • Tianzi Jiang
    • 2
  • Jianzhe Wang
    • 2
  • Lian Zheng
    • 1
  1. 1.School of Mechatronic EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Medical Imaging and Computation Group, National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations