Advertisement

Sparse Appearance Model Based Registration of 3D Ultrasound Images

  • K. Y. Esther Leung
  • Marijn van Stralen
  • Gerard van Burken
  • Marco M. Voormolen
  • Attila Nemes
  • Folkert J. ten Cate
  • Nico de Jong
  • Antonius F. W. van der Steen
  • Johan H. C. Reiber
  • Johan G. Bosch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)

Abstract

In this paper, we propose a sparse appearance model based registration algorithm for segmenting 3D echocardiograms. The end-diastolic model is built in 3D sparsely on 2D planes, representing the anatomical 4-chamber, 2-chamber, and short-axis views. Ultrasound specific intensity normalization and shape-based intensity modeling are employed. The model is matched in an intensity-based registration approach, by perturbing appearance and pose parameters simultaneously. Leave-one-out experiments on 10 patients reveal significant improvement in the segmentation using the normalized cross-correlation metric. The registration method will allow fully automatic extraction of the standard views as used in echocardiography. This will aid in the selection of images for inter- and intra-patient comparison and may provide an alternative for a complete 3D AAM.

Keywords

Appearance Model Normalize Mutual Information Active Appearance Model Anatomical Coordinate System Texture Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, E.D., Homma, S., Pearson, G., Holmes, J.W., Laine, A.F.: Segmentation of Real-Time Three-Dimensional Ultrasound for Quantification of Ventricular Function: A Clinical Study on Right and Left Ventricles. Ultrasound Med. Biol. 31(9), 1143–1158 (2005)CrossRefGoogle Scholar
  2. 2.
    Gérard, O., Billon, A.C., Rouet, J.M., Jacob, M., Fradkin, M., Allouche, C.: Efficient Model-Based Quantification of Left Ventricular Function in 3-D Echocardiography. IEEE Trans. Med. Imag. 21(9), 1059–1068 (2002)CrossRefGoogle Scholar
  3. 3.
    Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M., Reiber, J.H.C.: Automatic Segmentation of Echocardiographic Sequences by Active Appearance Motion Models. IEEE Trans. Med. Imag. 21(11), 1374–1383 (2002)CrossRefGoogle Scholar
  4. 4.
    Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., Van der Geest, R.J., Reiber, J.H.C., Sonka, M.: 3-D Active Appearance Models: Segmentation of Cardiac MR and Ultrasound Images. IEEE Trans. Med. Imag. 21(9), 1167–1178 (2002)CrossRefGoogle Scholar
  5. 5.
    Rohling, R.N., Gee, A.H., Berman, L.: Automatic Registration of 3-D Ultrasound Images. Ultrasound Med. Biol. 24(6), 841–854 (1998)CrossRefGoogle Scholar
  6. 6.
    Shekhar, R., Zagrodsky, V., Garcia, M.J., Thomas, J.D.: Registration of Real-Time 3-D Ultrasound Images of the Heart for Novel 3-D Stress Echocardiography. IEEE Trans. Med. Imag. 23(9), 1141–1149 (2004)CrossRefGoogle Scholar
  7. 7.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ordás, S., Westenberg, J.J.M., Reiber, J.H.C., Lelieveldt, B.P.F.: SPASM: A 3D-ASM for Segmentation of Sparse and Arbitrarily Oriented Cardiac MRI Data. Med. Image Anal. 10(2), 286–303 (2006)CrossRefGoogle Scholar
  9. 9.
    Van Stralen, M., Bosch, J.G., Voormolen, M.M., Van Burken, G., Krenning, B.J., Van Geuns, R.J.M., Angelié, E., Van der Geest, R.J., Lancée, C.T., De Jong, N., Reiber, J.H.C.: Semi-automatic Border Detection Method for Left Ventricular Volume Estimation in 4D Ultrasound Data. In: SPIE Med. Imag., vol. 5747, pp. 1457–1467 (2005)Google Scholar
  10. 10.
    Leung, K.Y.E., Van Stralen, M., Voormolen, M.M., Van Burken, G., Nemes, A., Ten Cate, F.J., Geleijnse, M.L., De Jong, N., Van der Steen, A.F.W., Reiber, J.H.C., Bosch, J.G.: Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography. SPIE Med. Imag. 6144, 614418 (2006)CrossRefGoogle Scholar
  11. 11.
    Maintz, J.B.A., Viergever, M.A.: A Survey of Medical Image Registration. Med. Image Anal. 2(1), 1–36 (1998)CrossRefGoogle Scholar
  12. 12.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optimiz. 9(1), 112–147 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. Y. Esther Leung
    • 1
  • Marijn van Stralen
    • 1
    • 2
    • 3
  • Gerard van Burken
    • 1
  • Marco M. Voormolen
    • 1
    • 2
  • Attila Nemes
    • 1
  • Folkert J. ten Cate
    • 1
  • Nico de Jong
    • 1
    • 2
  • Antonius F. W. van der Steen
    • 1
    • 2
  • Johan H. C. Reiber
    • 3
  • Johan G. Bosch
    • 1
  1. 1.Biomedical EngineeringThoraxcenter, Erasmus MCRotterdamthe Netherlands
  2. 2.ICIN – Interuniversity Cardiology Institute of the NetherlandsUtrechtthe Netherlands
  3. 3.Div. Image Processing, Dept. of RadiologyLeiden University Medical CenterLeidenthe Netherlands

Personalised recommendations