Advertisement

Optical Mapping of the Frontal Cortex During a Surgical Knot-Tying Task, a Feasibility Study

  • Daniel Leff
  • Peck Hui Koh
  • Rajesh Aggarwal
  • Julian Leong
  • Fani Deligianni
  • Clare Elwell
  • David T. Delpy
  • Ara Darzi
  • Guang-Zhong Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)

Abstract

Functional neuroimaging technologies have transformed cognitive neuroscience by enhancing our understanding of the functional sub-classification of brain regions. Whilst a number of studies have explored brain activation associated with complex motor skills, few of the tasks investigated have had direct occupational relevance. To date there have been no functional studies involving surgeons or motor paradigms with relevance to surgery. This study reports on the feasibility of Near Infrared Spectroscopy (NIRS) for studying subjects performing realistic surgical tasks in a laboratory setting. We observed a recognisable haemodynamic response to brain activation, which was reliable and repeatable in subjects despite days without practice on the task. A wide range of prefrontal activation was observed, thought to reflect considerable variation in the cognitive resources allocated to complete a highly attention demanding surgical task.

Keywords

Optical Mapping Bimanual Coordination Surgical Task Prefrontal Activation Motor Skill Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moorthy, K., Munz, Y., Sarker, S.K., Darzi, A.: Objective assessment of technical skills in surgery. BMJ 327(7422), 1032–1037 (2003)CrossRefGoogle Scholar
  2. 2.
    Aggarwal, R., Moorthy, K., Darzi, A.: Laparoscopic skills training and assessment. Br. J. Surg. 91(12), 1549–1558 (2004)CrossRefGoogle Scholar
  3. 3.
    Taffinder, N., Smith, S., Mair, J., Russell, R., Darzi, A.: Can a computer measure surgical precision? Reliability, validity and feasibility of the ICSAD. Surg. Endoscopy 13(suppl. 1), 81 (1999)Google Scholar
  4. 4.
    Nicolaou, M., James, A., Darzi, A., Yang, G.Z.: A Study of Saccade Transition for Attention Segregation and Task Strategy in Laparoscopic Surgery. In: Lecture Notes in Computer Science, pp. 97–104 (2004)Google Scholar
  5. 5.
    Doyon, J., Penhune, V., Ungerleider, L.G.: Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3), 252–262 (2003)CrossRefGoogle Scholar
  6. 6.
    Matsumura, M.: Role of the cerebellum in implicit motor skill learning: a PET study. Brain Res. Bull. 63(6), 471–483 (2004)CrossRefGoogle Scholar
  7. 7.
    Jenkins, I.H., Brooks, D.J., Nixon, P.D., Frackowiak, R.S., Passingham, R.E.: Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14(6), 3775–3790 (1994)Google Scholar
  8. 8.
    Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., Swinnen, S.P.: Changes in brain activation during the acquisition of a new bimanual co-ordination task. Neuropsychologia 42(7), 855–867 (2004)CrossRefGoogle Scholar
  9. 9.
    Jancke, L., Shah, N.J., Peters, M.: Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Cogn. Brain Res. 10(1-2), 177–183 (2000)CrossRefGoogle Scholar
  10. 10.
    Haslinger, B., Erhard, P., Altenmuller, E., et al.: Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum. Brain Mapp. 22(3), 206–215 (2004)CrossRefGoogle Scholar
  11. 11.
    Jobsis, F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)CrossRefGoogle Scholar
  12. 12.
    Cope, M., Delpy, D.T.: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 26(3), 289–294 (1988)CrossRefGoogle Scholar
  13. 13.
    Watanabe, E., Yamashita, Y., Maki, A., Ito, Y., Koizumi, H.: Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans. Neurosci. Lett. 205(1), 41–44 (1996)CrossRefGoogle Scholar
  14. 14.
    Toronov, V., Webb, A., Choi, J.H., et al.: Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med. Phys. 28(4), 521–527 (2001)CrossRefGoogle Scholar
  15. 15.
    Benaron, D.A., et al.: Noninvasive functional imaging of human brain using light. J. Cereb. Blood Flow Metab. 20(3), 469–477 (2000)CrossRefGoogle Scholar
  16. 16.
    Okamoto, M., Dan, H., Shimizu, K., et al.: Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI. Neuroimage 21(4), 1275–1288 (2004)CrossRefGoogle Scholar
  17. 17.
    Obrig, H., Wolf, T., Doge, C.: Cerebral oxygenation changes in response to motor stimulation. J. Appl. Physiol. 81(3), 1174–1183 (1996)Google Scholar
  18. 18.
    Maki, A., Yamashita, Y., Watanabe, E., Koizumi, H.: Visualizing human motor activity by using non-invasive optical topography. Front Med. Biol. Eng. 7(4), 285–297 (1996)Google Scholar
  19. 19.
    Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)CrossRefGoogle Scholar
  20. 20.
    Jasper, H.H.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 10(371–375) (1958)Google Scholar
  21. 21.
    Koh, P.H., Delpy, D.T., Elwell, C.E.: fOSA: A software tool for NIRS processing, Biomedical Optics, Ft. Lauderdale, Florida. OSA Technical Digest ME71 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel Leff
    • 1
  • Peck Hui Koh
    • 2
  • Rajesh Aggarwal
    • 1
  • Julian Leong
    • 1
  • Fani Deligianni
    • 1
  • Clare Elwell
    • 2
  • David T. Delpy
    • 2
  • Ara Darzi
    • 1
  • Guang-Zhong Yang
    • 1
  1. 1.Royal Society/Wolfson Medical Image Computing Laboratory & Department of Biosurgery and Surgical TechnologyImperial College LondonLondonUnited Kingdom
  2. 2.Biomedical Optics Research Laboratory, Department of Medical Physics and BioengineeringUniversity College LondonUnited Kingdom

Personalised recommendations