An Inverse Recovery of Cardiac Electrical Propagation from Image Sequences

  • Heye Zhang
  • Chun Lok Wong
  • Pengcheng Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)


We present an inverse approach to estimate patient-specific electrical excitations (action potentials) in heart from tomographic medical image sequences in this paper. We first define the geometrical/physical representation of heart, and acquire the dense motion field from image sequences through a stochastic multi-frame motion recovery algorithm. We assume material properties of cardiac muscles are known so that we could calculate the myocardial active forces through the law of force equilibrium from the motion field. Since three dimensional active forces are stimulated by one dimensional active stresses and active stresses are physiologically driven by action potentials, we finally can obtain the pattern of action potentials inside myocardium from active stresses calculated from motion field, where a spatiotemporal regularization with a prior model constraint is applied to estimate action potentials from active forces. We conduct experiments on three dimensional synthetic data and canine magnetic resonance image sequence with favorable results.


Active Force Active Stress Tikhonov Regularization Force Equilibrium Move Less Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  2. 2.
    Belytschko, T., Liu, W., Moran, B.: Nonlinear finite elements for continua and structures. John Wiley Sons Ltd., Chichester (2000)MATHGoogle Scholar
  3. 3.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  4. 4.
    Borisenko, A.I., Tarapov, I.E.: Vector and tensor analysis with applications. Dover Publications, Inc., Mineola (1979)Google Scholar
  5. 5.
    Chandrashekara, R., Mohiaddin, R., Rueckert, D.: Analysis of 3D myocardial motion in tagged MR images using nonrigid image registration. IEEE Trans. Med. Img. 23(10), 1245–1250 (2004)CrossRefGoogle Scholar
  6. 6.
    Haber, E., Metaxas, D.N., Axel, L.: Motion analysis of the right ventricle from MRI images. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 177–188. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    MacLeod, R.S., Brooks, D.H.: Recent progress in inverse problems in electrocardiology. IEEE EMBS Magazine 17(1), 73–83 (1998)CrossRefGoogle Scholar
  8. 8.
    Prince, J.L., McVeigh, E.R.: Motion estimation form tagged MR image sequences. IEEE Trans. Med. Img., 238–249 (1992)Google Scholar
  9. 9.
    Sanchez-Ortiz, G.I., Sermesant, M., Rhode, K.S., Chandrashekara, R., Razavi, R., Hill, D.L.G., Rueckert, D.: Localization of abnormal conduction pathways for tachyarrhythmia treatment using tagged MRI. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 425–433. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Wong, C.L., Shi, P.: Finite deformation guided nonlinear filtering for multiframe cardiac motion analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 895–902. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Wong, C.L., Zhang, H., Liu, H., Shi, P.: Physiome model based cardiac information recovery. In: EMBS (2005)Google Scholar
  12. 12.
    Zhang, H., Shi, P.: A meshfree method for solving cardiac electrical propagation. In: EMBS (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Heye Zhang
    • 1
  • Chun Lok Wong
    • 1
  • Pengcheng Shi
    • 1
    • 2
  1. 1.Medical Image Computing GroupHong Kong University of Science & TechnologyHong Kong
  2. 2.School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina

Personalised recommendations