Advertisement

Improved Shape Modeling of Tubular Objects Using Cylindrical Parameterization

  • Toon Huysmans
  • Jan Sijbers
  • Filiep Vanpoucke
  • Brigitte Verdonk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4091)

Abstract

Statistical shape modeling is widely used for medical image segmentation and interpretation. The main problem in building a shape model is the construction of a pointwise correspondence between the training objects. Manually corresponding objects is a subjective and time consuming task. Fortunately, surface parameterization can be automated and it has been successfully used. Mostly, the objects are of spherical nature such that spherical parameterization can be employed. However, for tubular objects, this method falls short. In this paper, a cylindrical parameterization technique is proposed and compared to spherical parameterization. As an application, both methods are applied to establish correspondences for a set of tympani scali of human cochleas and the quality of the models built from these correspondences is assessed.

Keywords

statistical shape modeling mesh parameterization tubular objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans. Med. Imaging 18(10), 828–839 (1999)CrossRefGoogle Scholar
  2. 2.
    Brechbühler, C., Gerig, G., Kübler, O.: Parametrization of closed surfaces for 3-d shape description. Comput. Vis. Image Underst. 61(2), 154–170 (1995)CrossRefGoogle Scholar
  3. 3.
    Huysmans, T., Sijbers, J., Verdonk, B.: Parameterization of tubular surfaces on the cylinder. The journal of WSCG 13(3), 97–104 (2005)Google Scholar
  4. 4.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  5. 5.
    Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. 22(3), 340–349 (2003)CrossRefGoogle Scholar
  6. 6.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 209–216. ACM Press, New York (1997)CrossRefGoogle Scholar
  7. 7.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in multiresolution for geometric modelling, pp. 157–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Degener, P., Meseth, J., Klein, R.: An adaptable surface parameterization method. In: Proceedings of the 12th International Meshing Roundtable, pp. 201–213 (2003)Google Scholar
  9. 9.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Toon Huysmans
    • 1
  • Jan Sijbers
    • 1
  • Filiep Vanpoucke
    • 2
  • Brigitte Verdonk
    • 3
  1. 1.VisionLabUniversity of Antwerp (CDE)AntwerpBelgium
  2. 2.MedelecUniversity of Antwerp (CDE)AntwerpBelgium
  3. 3.Emerging Computational TechniquesUniversity of Antwerp (CMI)AntwerpBelgium

Personalised recommendations