Synthesizing Proof Planning Methods and Ω-Ants Agents from Mathematical Knowledge

  • Serge Autexier
  • Dominik Dietrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4108)


In this paper we investigate how to extract proof procedural information contained in declarative representations of mathematical knowledge, such as axioms, definitions, lemmas and theorems (collectively called assertions) and how to effectively include it into automated proof search techniques. In the context of the proof planner Multi and the agent-based reasoning system Ω-Ants, we present techniques to automatically synthesize proof planning methods and Ω-Ants-agents from assertions such that they can be actively used by these systems. This in turn enables a user to effectively use these systems without having to know the peculiarities of coding methods and agents.


Mathematical Knowledge Outline Function Natural Deduction Formal Argument Elimination Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autexier, S.: The CoRe calculus. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Autexier, S., Benzmüller, Chr., Dietrich, D., Meier, A., Wirth, C.-P.: A generic modular data structure for proof attempts alternating on ideas and granularity. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Barendregt, H.: The λ-Calculus - Its Syntax and Semantics. North-Holland, Amsterdam (1984)Google Scholar
  4. 4.
    Benzmüller, C., Sorge, V.: OANTS – an open approach at combining interactive and automated theorem proving. In: Kerber, M., Kohlhase, M. (eds.) Proceedings of Calculemus-2000, St. Andrews, UK, pp. 6–7. AK Peters (August 2001)Google Scholar
  5. 5.
    Benzmüller, C., Fiedler, A., Meier, A., Pollet, M., Siekmann, J.: Omega. In: Wiedijk, F. (ed.) The Seventeen Provers of the World. LNCS (LNAI), vol. 3600, pp. 127–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  7. 7.
    Dietrich, D.: The task-layer of the Ωmega system. Diploma thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2006)Google Scholar
  8. 8.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Farmer, W., Guttman, J., Thayer, F.J.: IMPS: An interactive mathematical proof system. Journal of Automated Reasoning 11 (1993)Google Scholar
  10. 10.
    Fitting, M.: First-Order Logic and Automated Theorem Proving. In: First-Order Logic and Automated Theorem Proving /, 2nd edn., Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Gentzen, G.: The Collected Papers of Gerhard Gentzen (1934-1938). In: Szabo, M.E. (ed.), North Holland, Amsterdam (1969)Google Scholar
  12. 12.
    Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)Google Scholar
  13. 13.
    Meier, A., Melis, E.: Multi: A multi-strategy proof-planner. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Richardson, J.D.C., Smaill, A., Green, I.M.: System description: proof planning in higher-order logic with λ-clam. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Sorge, V.: A Blackboard Architecture for the Integration of Reasoning Techniques into Proof Planning. PhD thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (November 2001)Google Scholar
  16. 16.
    Wack, B.: Typage et déduction dans le calcul de réécriture. Thèse de doctorat, Université Henri Poincaré (Nancy 1) (October 2005)Google Scholar
  17. 17.
    Wiedijk, F.: Formal proof sketches. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 378–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Serge Autexier
    • 1
    • 2
  • Dominik Dietrich
    • 2
  1. 1.German Research Center for Artificial Intelligence (DFKI GmbH)SaarbrückenGermany
  2. 2.FR 6.2 InformatikSaarland UniversitySaarbrückenGermany

Personalised recommendations