A Dynamic Poincaré Principle

  • Manfred Kerber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4108)


Proofs contain important mathematical knowledge and for mathematical knowledge management it is important to represent them adequately. They can be given at different levels of abstraction and writing a proof is typically a compromise between two extremes. On the one hand it should be in full detail so that it can be checked without using any intelligence, on the other hand it should be concise and informative. Making everything fully explicit is not adequate for most mathematical fields since easy parts do not need any communication. In particular in traditional proofs, computations are typically not made explicit, but a reader is expected to check them for him- or herself. Barendregt formulated a principle, the Poincaré Principle, which allows to separate reasoning and computation. However, should any computation be hidden? Or only easy computations? What is easy? How can we be sure that computations are correct? In this contribution, relevant notions are discussed and a principle is introduced which allows for checkable proofs which give a choice to see on request two different types of argument. The first type of argument states why any computation of this kind is correct. The second type states a (typically lengthy) detailed low-level proof of a trace of the computation.


Computable Function Computer Algebra System Correctness Proof Proof Assistant Concrete Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayer, A.J.: Language, Truth and Logic. Victor Gollancz Ltd., 2nd edn., London, UK 1951 edn.(1936)Google Scholar
  2. 2.
    Barendregt, H.: The impact of the lambda calculus in logic and computer science. Bull. Symbolic Logic 3(2), 181–215 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barendregt, H., Cohen, A.M.: Electronic communication of mathematics and the interaction of computer algebra systems and proof assistants. Journal of Symbolic Computation 32(5), 3–22 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boole, G.: An Investigation of The Laws of Thought, Cambridge, UK., Macmillan, Barclay, & Macmillan, New York (reprinted by Dover Publication 1854) (1958)Google Scholar
  5. 5.
    Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  6. 6.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, reprint in: Begriffsschrift und andere Aufsätze, J.A., (ed.), Hildesheim. Also in Logiktexte, Berka, K., Kreiser, L. (eds.), pp. 82–112 (1879)Google Scholar
  7. 7.
    Hardy, G.: A Mathematician’s Apology. Cambridge University Press, London (1940)Google Scholar
  8. 8.
    van Heijenoort, J. (ed.): From Frege to Gödel – A Source Book in Mathematical Logic, pp. 1879–1931. Havard University Press, Cambridge, Massachusett (1967)MATHGoogle Scholar
  9. 9.
    Huet, G., et al.: The Coq Theorem Prover (Version 8.0).
  10. 10.
    Kerber, M.: Why is the Lucas-Penrose argument invalid? In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 380–393. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kerber, M., Kohlhase, M., Sorge, V.: Integrating computer algebra into proof planning. Journal of Automated Reasoning 21(3), 327–355 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Leibniz, G.W.: Projet et essais pour arriver à quelque certitude pour finir une bonne partie des disputes et pour avancer l’art d’inventer. In: Berka, K., Kreiser, L. (eds.). Logiktexte, ch. I.2, pp. 16–18. Akademie-Verlag, german translation, Berlin, Germany (1686) (1983)Google Scholar
  13. 13.
    Nederpelt, R., Geuvers, H., de Vrijer, R. (eds.): Selected Papers on Automath. Studies in Logic and the Foundations of Mathematics, vol. 133. North-Holland, Amsterdam (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manfred Kerber
    • 1
  1. 1.School of Computer ScienceThe University of BirminghamEngland

Personalised recommendations