Verifying and Invalidating Textbook Proofs Using Scunak

  • Chad E. Brown
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4108)


Many textbook proofs are essentially human-readable representations of natural deduction proofs. Terms in dependent type theory provide formally checkable representations of natural deduction proofs. We show how the new mathematical assistant system Scunak can be used to verify a textbook proof by translating the \({\rm L\kern-.36em\raise.3ex\hbox{\sc a}\kern-.15em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}\) version into a proof term in a dependent type theory. We also show how Scunak can give interesting output upon failure.


Type Theory Class Type Concrete Syntax Type Context Proof State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autexier, S., Fiedler, A.: Textbook proofs meet formal logic - the problem of underspecification and granularity. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis. John Wiley & Sons, New York (1982)MATHGoogle Scholar
  3. 3.
    Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76, 95–120 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grabowski, A., Schwarzweller, C.: Translating mathematical vernacular into knowledge repositories. In: Kohlhase [11], pp. 49–64Google Scholar
  5. 5.
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Roger Hindley, J.: Basic Simple Type Theory. Cambridge University Press, Cambridge (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Jojgov, G.I.: Translating a fragment of weak type theory into type theory with open terms. In: Kohlhase [11], pp. 389–403Google Scholar
  8. 8.
    Jojgov, G.I., Nederpelt, R.: A path to faithful formalizations of mathematics. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 145–159. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kamareddine, F., Maarek, M., Wells, J.B.: Toward an object-oriented structure for mathematical text. In: Kohlhase [11], pp. 217–233Google Scholar
  10. 10.
    Kohlhase, M.: Omdoc: Towards an internet standard for the administration, distribution, and teaching of mathematical knowledge. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 32–52. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type theory. In: Halpern, J. (ed.) Proceedings of the Sixteenth Annual IEEE Symp. on Logic in Computer Science, LICS 2001, p. 221. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  13. 13.
    Pfenning, F., Schürmann, C.: System Description: Twelf–A Meta-Logical Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Reed, J.: Proof irrelevance and strict definitions in a logical framework. Technical Report 02-153, School of Computer Science, Carnegie Mellon University (2002)Google Scholar
  15. 15.
    Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 162–174. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Wiedijk, F.: A new implementation of Automath. J. Autom. Reasoning 29(3–4), 365–387 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wiedijk, F.: Is ZF a hack? Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics. Journal of Applied Logic 4 (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chad E. Brown
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations