Advertisement

Hybrid Extended Finite Automata

  • Henning Bordihn
  • Markus Holzer
  • Martin Kutrib
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4094)

Abstract

Extended finite automata are finite state automata equipped with the additional ability to apply an operation on the currently remaining input word, depending on the current state. Hybrid extended finite automata can choose from a finite set of such operations. In this paper, five word operations are taken into consideration which always yield letter-equivalent results, namely reversal and shift operations. The computational power of those machines is investigated, locating the corresponding families of languages in the Chomsky hierarchy. Furthermore, different types of hybrid extended finite automata, defined by the set of operations they are allowed to apply, are compared with each other, demonstrating that there exist dependencies and independencies between the input manipulating operations.

Keywords

Regular Language Finite Automaton Input Symbol State Automaton Language Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordihn, H., Holzer, M., Kutrib, M.: Input reversals and iterated pushdown automata: A new characterization of khabbaz geometric hierarchy of languages. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 102–113. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bordihn, H., Holzer, M., Kutrib, M.: Revolving-input finite automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bordihn, H., Holzer, M., Kutrib, M.: Finite automata with bio-inspired operations: The hairpin inversion operation (unpublished manuscript) (February 2006)Google Scholar
  4. 4.
    Chomsky, N.: Handbook of Mathematic Psychology. In: Formal Properties of Grammars, vol. 2, pp. 323–418. Wiley & Sons, New York (1962)Google Scholar
  5. 5.
    Evey, R.J.: The Theory and Applications of Pushdown Store Machines. Ph.D thesis, Harvard University, Massachusetts (May 1963)Google Scholar
  6. 6.
    Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages. North-Holland, Amsterdam (1975)MATHGoogle Scholar
  7. 7.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. Journal of the ACM 14(2), 389–418 (1967)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ginsburg, S., Spanier, E.H.: Control sets on grammars. Mathematical Systems Theory 2(2), 159–177 (1968)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Greibach, S.A.: An infinite hierarchy of context-free languages. Journal of the ACM 16(1), 91–106 (1969)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Holzer, M., Kutrib, M.: Flip-pushdown automata: k + 1 pushdown reversals are better than k. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 490–501. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Khabbaz, N.A.: Control sets and linear grammars. Information and Control 25(3), 206–221 (1974)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Khabbaz, N.A.: A geometric hierarchy of languages. Journal of Computer and System Sciences 8(2), 142–157 (1974)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sarkar, P.: Pushdown automaton with the ability to flip its stack. Report TR01-081, Electronic Colloquium on Computational Complexity (ECCC) (November 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henning Bordihn
    • 1
  • Markus Holzer
    • 2
  • Martin Kutrib
    • 3
  1. 1.Institut für InformatikUniversität PotsdamPotsdamGermany
  2. 2.Institut für InformatikTechnische Universität MünchenGarching bei MünchenGermany
  3. 3.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations