Advertisement

On the State Complexity of Combined Operations

  • Sheng Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4094)

Abstract

The state complexity of combined operations is studied. We show that the state complexity of a combined operation can be very different from the composition of the state complexities of the participating individual operations. However, the estimate through individual nondeterministic state complexities for each of the combined operations being considered is very similar to the actual state complexity. Several open problems related to state complexity are also proposed.

Keywords

State Complexity Regular Language Combine Operation Input Symbol Descriptional Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theoretical Computer Science 119, 267–291 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Campeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)MATHMathSciNetGoogle Scholar
  4. 4.
    Campeanu, C., Salomaa, K., Yu, S.: State Complexity of Regular Languages: Finite Versus Infinite. In: Calude, C., Paun, G. (eds.) Finite vs Infinite – Contributions to an Eternal Dilemma, Ch.5, pp. 53–73. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Domaratzki, M.: State complexity and proportional removals. Journal of Automata, Languages and Combinatorics 7, 455–468 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular Expressions: New Results and Open Problems. Journal of Automata, Languages and Combinatorics (to appear)Google Scholar
  7. 7.
    Gao, Y., Salomaa, K., Yu, S.: State complexity of catenation and reversal combined with star. In: Descriptional Complexity of Formal Systems (DCFS 2006) (to appear)Google Scholar
  8. 8.
    Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 162–172. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. Journal of Automata, Languages and Combinatorics 6(4), 453–466 (2001)MATHMathSciNetGoogle Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison Wesley, Reading (1979)MATHGoogle Scholar
  12. 12.
    Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoretical Computer Science 237, 485–494 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jirásková, G.: State complexity of some operations on regular languages. In: Proceedings of 5th Workshop on Descriptional Complexity of Formal Systems, pp. 114–125 (2003)Google Scholar
  14. 14.
    Jirásková, G.: State complexity of some operations on binary regular languages. Theoretical Computer Science (to appear)Google Scholar
  15. 15.
    Jirásek, J., Jirásková, G., Szabari, A.: State Complexity of Concatenation and Complementation of Regular Languages. International Journal of Foundations of Computer Science 16, 511–529 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jirásková, G., Okhotin, A.: State complexity of cyclic shift. In: Proceedings of DCFS 2005, Como, Italy, pp. 182–193 (June 30 - July 2, 2005)Google Scholar
  17. 17.
    Leiss, E.: Succinct representation of regular languages by boolean automata II. Theoretical Computer Science 13, 323–330 (1981)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nicaud, C.: Average State Complexity of Operations on Unary Automata. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. International Journal of Foundations of Computer Science 13(1), 145–159 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rampersad, N.: The state complexity of L 2 and L k. Information Processing Letters 98, 231–234 (2006)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Salomaa, A.: Theory of Automata. Pergamon Press, Oxford (1969)MATHGoogle Scholar
  22. 22.
    Salomaa, A., Salomaa, K., Yu, S.: State Complexity of Combined Operations. Theoretical Computer Science (to appear)Google Scholar
  23. 23.
    Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320, 293–313 (2004)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Salomaa, K., Yu, S.: NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets. Journal of Automata, Languages and Combinatorics 2(3), 177–186 (1997)MATHMathSciNetGoogle Scholar
  25. 25.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Yu, S.: State Complexity of Regular Languages. Journal of Automata, Languages and Combinatorics 6(2), 221–234 (2001)MATHMathSciNetGoogle Scholar
  27. 27.
    Yu, S.: State Complexity: Recent Results and Open Problems. In: ICALP 2004 Formal Language Workshop, also appears in Fundamenta Informaticae 64(1-4), 471–480 (2005) (invited talk)Google Scholar
  28. 28.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125, 315–328 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sheng Yu
    • 1
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondon, OntarioCanada

Personalised recommendations