Advertisement

A Family of Algorithms for Non Deterministic Regular Languages Inference

  • Manuel Vázquez de Parga
  • Pedro García
  • José Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4094)

Abstract

We present in this paper a new family of algorithms for regular languages inference from complete presentation.

Every algorithm of this family, on input of the sets of words (D  + ,D ), obtains for every x in D  +  at least a non deterministic finite automaton (NFA) which accepts x and is consistent with D . This automaton is, besides, irreducible in the sense that any further merging of states accepts words of D . The output of the algorithm is a NFA which consists of the collection of NFAs associated to each word of D  + . Every algorithm of the family converges to a automaton for the target language.

We also present the experiments done to compare one of the algorithms of the family with two other well known algorithms for the same task. The results obtained by our algorithm are better, both in error rate as in the size of the output.

Keywords

Recognition Rate Target Language Lexicographical Order Regular Language Negative Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, A., Dicky, A., Nivat, M.: A note about minimal non-deterministic automata. Bull. EATCS 47, 166–169 (1970)Google Scholar
  2. 2.
    Carrez, C.: On the minimalization of non-deterministic automata. Laboratoire de Calcul de la Faculté des Sciences de L’Université de Lille (1970)Google Scholar
  3. 3.
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theoretical Computer Science 313(2), 267–294 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    García, P., Vazquez de Parga, M.: A Note about mergible states in large NFA. Bull. of the EATCS 87, 181–184 (2005)MATHGoogle Scholar
  5. 5.
    Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)MATHCrossRefGoogle Scholar
  6. 6.
    Gold, E.M.: Complexity of Automaton Identification from Given Data. Information and Control 37, 302–320 (1978)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lombardy, S.: Approche structurelle de quelques problémes de la théorie des automates. Ph.D. Thesis, Ecole N.S. des Télécomunications (2001)Google Scholar
  8. 8.
    Oncina, J., García, P.: Inferring Regular Languages in Polynomial Updated Time. In: de la Blanca, P., Sanfeliú, Vidal (eds.) Pattern Recognition and Image Analysis. World Scientific, Singapore (1992)Google Scholar
  9. 9.
    Polák, L.: Minimalizations of NFA using the universal automaton. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 325–326. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manuel Vázquez de Parga
    • 1
  • Pedro García
    • 1
  • José Ruiz
    • 1
  1. 1.Departamento de Sistemas informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations