Advertisement

First Steps to an Audio Ontology-Based Classifier for Telemedicine

  • Cong Phuong Nguyen
  • Ngoc Yen Pham
  • Eric Castelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4093)

Abstract

Our work is within the framework of studying and implementing a sound analysis system in a telemedicine project. The task of this system is to detect situations of distress in a patient’s room based on sound analysis. If such a situation is detected, an alarm will be automatically sent to the medical centre. In this paper we present our works on building domain ontology of such situations. They gather abstract concepts of sounds and these concepts, along with their properties and instances, are represented by a neural network. The ontology-based classifier uses outputs of networks to identify classes of audio scenes. The system is tested with a database extracted from films.

Keywords

Hide Neuron Sound Effect Concept Property Audio Content Audio Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amatriain, X., Herrera, P.: Transmitting Audio Contents as Sound Objects. In: Proceedings of AES 22th International Conference on Virtual, Synthetic and Entertainment Audio, Espoo Finland (2002)Google Scholar
  2. 2.
    Breen, C., Khan, L., Kumar, A., Wang, L.: Ontology-Based Image Classification Using Neural Networks. In: Proc. SPIE (the International Society for Optical Engineering), vol. 4862, pp. 198–208 (2002)Google Scholar
  3. 3.
    Cano, P., Koppenberger, M., Celma, O., Herrera, P., Tarasov, V.: Sound Effects Taxonomy Management in Production Environments. In: Proceedings of AES 25th International Conference, London, UK (2004)Google Scholar
  4. 4.
    Carey, M.J., Parris, E.S., Lloyd-Thomas, H.: A Comparision of Features for Speech, Music Discrimination. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Munich Germany (1997)Google Scholar
  5. 5.
    Casey, M.: MPEG-7 Sound-Recognition Tools. IEEE Transaction on Circuits and Systems for Video Technology 11(6) (2001)Google Scholar
  6. 6.
    Dey, L., Abulaish, M.: Ontology Enhancement for Including Newly Acquired Knowledge about Concept Descriptions and Answering Imprecise Queries. In: Web Semantics Ontology, pp. 189–225. Idea Group (2006)Google Scholar
  7. 7.
    Gene Ontology Home: http://www.geneontology.org/
  8. 8.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  9. 9.
    Hatala, M., Kalantari, L., Wakkary, R., Newby, K.: Ontology and Rule Based Retrieval of Sound Objects in Augmented Audio Reality System for Museum Visitors. In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, pp. 1045–1050 (2004)Google Scholar
  10. 10.
    Istrate, D., Vacher, M., Castelli, E., Sérignat, J.F.: Distress Situation Identifcation though Sound Processing. An Application to Medical Telemonitoring. European Conference on Computational Biology, Paris (2003)Google Scholar
  11. 11.
    Istrate, D., Vacher, M., Serignat, J.F., Besacier, J.F., Castelli, E.: Système de Télésurveillance Sonore pour la Détection de Situation de Détresse (Sound Telesurveillance System for Distress Situations Detection). ITBM-RBM Elsevier (2006)Google Scholar
  12. 12.
    Istrate, D., Castelli, E., Vacher, M., Besacier, L., Serignat, J.F.: Sound Detection and Recognition in Medical Telemonitoring. IEEE Transactions on Information Technology in Biomedicine (to be published)Google Scholar
  13. 13.
    Khan, L., McLeod, D.: Audio Structuring and Personalized Retrieval Using Ontologies. In: Proceedings of IEEE Advances in Digital Libraries, Library of Congress, Washington DC, pp. 116–126 (2000)Google Scholar
  14. 14.
    Kim, H.G., Moreau, N., Sikora, T.: Audio Classification Based on MPEG-7 Spectral Basis Representations. IEEE Transactions on Circuits and Systems for Video Technology 14(5) (2004)Google Scholar
  15. 15.
    Laegreid, A., Hvidsten, T.R., Midelfart, H., Komorowski, J., Sandvik, A.K.: Predicting Gene Ontology Biological Process from Temporal Gene Expression Patterns. Genome Res. 13, 965–979 (2003)CrossRefGoogle Scholar
  16. 16.
    Lu, L., Jiang, H., Zhang, H.J.: A Robust Audio Classification and Segmentation Method. ACM Multimedia, 203–211 (2001)Google Scholar
  17. 17.
    Maillot, N., Thonnat, M., Hudelot, C.: Ontology Based Object Learning and Recognition: Application to Image Retrieval. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton FL, USA (2004)Google Scholar
  18. 18.
    Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An Ontology Approach to Object-Based Image Retrieval. In: Proceedings of the IEEE International Conference on Image Processing (2003)Google Scholar
  19. 19.
    Nakatani, T., Okuno, H.G.: Sound Ontology for Computational Auditory Scene Analysis. In: Proceedings of the fifteenth National Conference on Artificial Intelligence (AAAI-98), vol. 1, pp. 30–35 (1998)Google Scholar
  20. 20.
    Nguyen, C.P., Pham, N.Y., Castelli, E.: Toward a Sound Analysis System for Telemedicine. In: 2nd International Conference on Fuzzy Systems and Knowledge Discovery, Chansha, China (2005)Google Scholar
  21. 21.
    Noh, S., Seo, H., Choi, J., Choi, K., Jung, G.: Classifying Web Pages Using Adaptive Ontology. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington DC, pp. 2144–2149 (2003)Google Scholar
  22. 22.
    Pfeiffer, S., Fischer, S., Effelsberg, W.: Automatic Audio Content Analysis. IEEE Multimedia 3(3), 27–36 (1996)CrossRefGoogle Scholar
  23. 23.
    Prabowo, R., Jackson, M., Burden, P., Knoell, H.D.: Ontology-Based Automatic Classification for the Web Pages: Design, Implimentation and Evaluation. In: The 3rd International Conference on Web Information Systems Engineering, Singapore (2002)Google Scholar
  24. 24.
    Robinson, P.N., Wollstein, A., Bohme, U., Beattie, B.: Ontologizing Gene-Expression Microarray Data: Characterizing Clusters with Gene Ontology. Bioinformatics 20(6), 979–981 (2004)CrossRefGoogle Scholar
  25. 25.
    Taghva, K., Borsack, J., Coombs, J., Condit, A., Lumos, S., Nartker, T.: Ontology-Based Classification of Email. In: International Conference on Information Technology: Computers and Communications, Las Vegas Nevada (2003)Google Scholar
  26. 26.
    Wallace, M., Avrithis, Y., Stamou, G., Kollias, S.: Knowledge-Based Multimedia Content Indexing and Retrieval. Multimedia Content and the Semantic Web – Methods Standards and Tools, pp. 299–338. Wiley, Chichester (2005)Google Scholar
  27. 27.
    Wu, S.H., Tsai, T.H., Hsu, W.L.: Text Categorization Using Automatically Acquired Domain Ontology. In: The Sixth International Workshop on Information Retrieval with Asian Languages, Sapporo Japan, pp. 138–145 (2003)Google Scholar
  28. 28.
    Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Semi-supervised Adapted HMMs for Unusual Event Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego USA (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cong Phuong Nguyen
    • 1
  • Ngoc Yen Pham
    • 1
  • Eric Castelli
    • 1
  1. 1.International Research Center MICAHUT – CNRS/UMI2954 – INPGrenobleHanoiVietnam

Personalised recommendations