An Interactive Visualization Environment for Data Exploration Using Points of Interest

  • David Da Costa
  • Gilles Venturini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4093)


We present in this paper an interactive method for numeric or symbolic data visualization that allows a domain expert to extract useful knowledge and information. We propose a new approach based on points of interest (POI) but in the context of visual data mining. POIs are located on a circle, and data are displayed within this circle according to their similarities to these POI. Interactive actions are possible: selection, zoom, dynamical change of POI. We evaluate the properties of such visualization with standard data with known characteristics. We describe an industrial application which explores results from satisfaction inquiries.


Data Exploration Visualization Method Information Visualization Dynamic Visualization International World Wide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Au, P., Carey, M., Sewraz, S., Guo, Y., Rüger, S.M.: New paradigms in information visualization. In: Research and Development in Information Retrieval, pp. 307–309 (2000)Google Scholar
  2. 2.
    Becker, R.A., Cleveland, W.S.: Brushing Scatterplots. Technometrics  29, 127–142 (1987), reprinted in Cleveland, W.S., McGill, M.E. (eds.) Dynamic Graphics for Data Analysis. Chapman and Hall, New York (1988)Google Scholar
  3. 3.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)Google Scholar
  4. 4.
    Chernoff, H.: Using faces to represent points in k–dimensional spae graphically. Journal of the American Statistical Association 68, 361–368 (1973)CrossRefGoogle Scholar
  5. 5.
    Cleveland, W.S.: Visualizing Data. Hobart Press, Summit, New Jersey, USA (1993)Google Scholar
  6. 6.
    Healey, C.G., Booth, K.S., Enns, J.T.: Harnessing preattentive processes for multivariate data visualization. In: Proceedings of Graphics Interface 1993, Toronto, ON, Canada, May 1993, pp. 107–117 (1993)Google Scholar
  7. 7.
    Hoffman, P., Grinstein, G., Pinkney, D.: Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations. In: NPIVM 1999: Proceedings of the 1999 workshop on new paradigms in information visualization and manipulation in conjunction with the eighth ACM internation conference on Information and knowledge management, pp. 9–16. ACM Press, New York (1999)Google Scholar
  8. 8.
    Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1, 69–91 (1985)CrossRefMATHGoogle Scholar
  9. 9.
    Korfhage, R.: To see, or not to see: Is that the query? In: Bookstein, A., Chiaramella, Y., Salton, G., Raghavan, V.V. (eds.) Proceedings of the 14th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (Special Issue of the SIGIR Forum), Chicago, Illinois, USA, October 13-16, 1991, pp. 134–141. ACM Press, New York (1991)CrossRefGoogle Scholar
  10. 10.
    McCrickard, S., Kehoe, C.: Visualizing search results using sqwid. In: Proceedings of the Sixth International World Wide Web Conference (April 1997)Google Scholar
  11. 11.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. IEEE Visual Languages UMCP-CSD CS-TR-3665, 336–343, College Park, Maryland 20742, USA (1996)Google Scholar
  12. 12.
    Wong, P.C., Bergeron, R.D.: 30 years of multidimensional multivariate visualization. In: Scientific Visualization — Overviews, Methodologies and Techniques, pp. 3–33. IEEE Computer Society Press, Los Alamitos, CA (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Da Costa
    • 1
    • 2
  • Gilles Venturini
    • 2
  1. 1.AGICOMBloisFrance
  2. 2.Laboratoire d’InformatiqueToursFrance

Personalised recommendations