Advertisement

Construction of Concept Lattices Based on Indiscernibility Matrices

  • Hongru Li
  • Ping Wei
  • Xiaoxue Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)

Abstract

Formal concepts and concept lattices are two central notions of formal concept analysis. This paper investigates the problem of determining formal concepts based on the congruences on semilattices. The properties of congruences corresponding to formal contexts are discussed. The relationship between the closed sets generated by congruences and the elements of indiscernibility matrices is examined. Consequently, a new approach of determining concept lattices is derived.

Keywords

Concept lattice Congruence Formal context Indiscernibility matrix Semilattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burusco, A., Fuentes-González, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets and Systems 97, 109–114 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Düntsch, I., Gediga, G.: Algebraic aspects of attribute dependencies in information systems. Fundamenta Informaticae 29, 119–133 (1997)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)zbMATHGoogle Scholar
  4. 4.
    Hu, K., Sui, Y., Lu, Y.-c., Wang, J., Shi, C.-Y.: Concept Approximation in Concept Lattice. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS, vol. 2035, pp. 167–173. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Novotný, M.: Dependence Spaces of Information Systems. In: Orlowska, E. (ed.) Incomplete Informations: Rough Sets Analysis, pp. 193–246. Physica-Verlag, Heidelberg (1998)Google Scholar
  6. 6.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  8. 8.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  9. 9.
    Yao, Y.Y.: Concept lattices in rough set theory. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, pp. 796–801 (2004)Google Scholar
  10. 10.
    Zhang, W.-x., Wei, L., Qi, J.-J.: Attribute Reduction in Concept Lattice Based on Discernibility Matrix. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS(LNAI), vol. 3642, pp. 157–165. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Zhang, W.-X., Leung, Y., Wu, W.-Z.: Information Systems and Knowledge Discovery. Science Press, Beijing (2003)Google Scholar
  12. 12.
    Zhang, W.-X., Qiu, G.-F.: Uncertain Decision Making Based on Rough Sets. Tsinghua University Press, Beijing (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hongru Li
    • 1
    • 2
  • Ping Wei
    • 1
  • Xiaoxue Song
    • 2
  1. 1.Department of Mathematics and Information SciencesYan’tai UniversityYan’taiP. R. China
  2. 2.Faculty of Science, Institute for Information and System SciencesXi’an Jiaotong UniversityXi’anP.R. China

Personalised recommendations