Marker-Passing Inference in the Scone Knowledge-Base System

  • Scott E. Fahlman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)


The Scone knowledge-base system, currently being developed at Carnegie Mellon University, implements search and inference operations using a set of marker-passing algorithms. These were originally designed for a massively parallel hardware architecture but now are implemented completely in software. The algorithms are fast, relatively simple, and they support efficient implementation of the most heavily used KB features. This paper describes these marker-passing algorithms, their strengths and limitations, and how they are used in Scone.


Knowledge Base Parallel Machine Defense Advance Research Project Agency Default Reasoning Marker Passing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fahlman, S.E.: The Scone Knowledge Base (home page),
  2. 2.
    Fahlman, S.E.: NETL: A System for Representing and Using Real-World Knowledge. MIT Press, Cambridge (1979)MATHGoogle Scholar
  3. 3.
    Quillian, M.R.: Semantic Memory. In: Minsky, M.L. (ed.) Semantic Information Processing. MIT Press, Cambridge (1968)Google Scholar
  4. 4.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  5. 5.
    Moldovan, D.I., Lee, W., Lin, C.: SNAP: A Marker-Propagation Architecture for Knowledge Processing. IEEE Trans. Parallel Distrib. Syst. 3(4), 397–410 (1992)CrossRefGoogle Scholar
  6. 6.
    Kim, J.T., Moldovan, D.I.: Classification and Retrieval of Knowledge on Parallel Marker Passing Architecture. IEEE Trans. Knowl. Data Eng. 5(5), 753–761 (1993)CrossRefGoogle Scholar
  7. 7.
    Harabagiu, S.M., Moldovan, D.I.: Parallel System for Text Inference Using Marker Propagations. IEEE Trans. Parallel Distrib. Syst. 9(8), 729–747 (1998)CrossRefGoogle Scholar
  8. 8.
    Hendler, J.A.: Integrating Marker-passing and Problem Solving: A spreading activation approach to improved choice in planning. Lawrence Erlbaum, Mahwah NJ (1987) Google Scholar
  9. 9.
    Hendler, J.A.: Marker-passing over microfeatures: Towards a hybrid symbolic/ connectionist model. Cognitive Science 13(1), 79–106 (1989)CrossRefGoogle Scholar
  10. 10.
    Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning, ch. 10 and 11. Morgan Kaufmann, San Francisco (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Scott E. Fahlman
    • 1
  1. 1.Language Technologies Institute & Computer Science DepartmentCarnegie Mellon UniversityPittsburghU.S.A.

Personalised recommendations