Advertisement

Fixed Linear Crossing Minimization by Reduction to the Maximum Cut Problem

  • Christoph Buchheim
  • Lanbo Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)

Abstract

Many real-life scheduling, routing and location problems can be formulated as combinatorial optimization problems whose goal is to find a linear layout of an input graph in such a way that the number of edge crossings is minimized. In this paper, we study a restricted version of the linear layout problem where the order of vertices on the line is fixed, the so-called fixed linear crossing number problem (FLCNP). We show that this \(\mathcal{NP}\)-hard problem can be reduced to the well-known maximum cut problem. The latter problem was intensively studied in the literature; efficient exact algorithms based on the branch-and-cut technique have been developed. By an experimental evaluation on a variety of graphs, we show that using this reduction for solving FLCNP compares favorably to earlier branch-and-bound algorithms.

Keywords

Integer Linear Program Exact Algorithm Hamiltonian Cycle Cutting Plane Linear Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cimikowski, R.: Algorithms for the fixed linear crossing number problem. Disc. Appl. Math. 122, 93–115 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Computational Geometry: Theory and Applications 4, 235–282 (1994)MATHMathSciNetGoogle Scholar
  3. 3.
    Galil, Z., Kannan, R., Szemerédi, E.: On nontrivial separators for k-page graphs and simulations by nondeterministic one-tape Turing machines. J. Comput. System Sci. 38(1), 134–149 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Disc. Meth. 4, 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gilbert, R.S., Kleinöder, W.K.: CNMgraf – graphic presentation services for network management. In: Proc. 9th Symposium on Data Communication, pp. 199–206 (1985)Google Scholar
  6. 6.
    Harju, T., Ilie, L.: Forbidden subsequences and permutations sortable on two parallel stacks. In: Where mathematics, computer science, linguistics and biology meet, pp. 267–275. Kluwer, Dordrecht (2001)Google Scholar
  7. 7.
    Laurent, M.: The max-cut problem. In: Dell’Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliography in Combinatorial Optimization. Wiley, Chichester (1997)Google Scholar
  8. 8.
    Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In: Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  9. 9.
    Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard Ising spin glass problems by branch-and-cut. In: New Optimization Algorithms in Physics, pp. 47–69. Wiley-VCH, Chichester (2004)CrossRefGoogle Scholar
  10. 10.
    Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nicholson, T.A.J.: Permutation procedure for minimizing the number of crossings in a network. Proc. IEEE 115, 21–26 (1968)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rosenberg, A.L.: DIOGENES, circa 1986. In: Makedon, F., Mehlhorn, K., Papatheodorou, T.S., Spirakis, P.G. (eds.) AWOC 1986. LNCS, vol. 227, pp. 96–107. Springer, Heidelberg (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christoph Buchheim
    • 1
  • Lanbo Zheng
    • 2
    • 3
  1. 1.Computer Science DepartmentUniversity of CologneGermany
  2. 2.School of Information TechnologiesUniversity of SydneyAustralia
  3. 3.IMAGEN program, National ICTAustralia

Personalised recommendations