Efficient Partially Blind Signature Scheme with Provable Security

  • Zheng Gong
  • Xiangxue Li
  • Kefei Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)


Partially blind signature was first introduced by Abe and Fujisaki. Subsequently, Abe and Okamoto proposed a provably secure construction for partially blind signature schemes with a formalized definition in their work. In this paper, based on discrete logarithm problem and the Schnorr’s blind signature scheme, we propose a new efficient partially blind signature scheme. Follow the construction proposed by Abe and Okamoto, we prove its security in random oracle model. The computation and communication costs are both reduced in our scheme. It will make privacy-oriented applications which based on partially blind signatures more efficient and suitable for hardware-limited environment, such as smart phones and PDAs.


Random Oracle Blind Signature Discrete Logarithm Problem Bilinear Pairing Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaum, D.: Blind signature for untraceable payments. In: Advances in Cryptology-CRYPTO 1982, pp. 199–203 (1983)Google Scholar
  2. 2.
    Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Chien, H.Y., Jan, J.K., Tseng, Y.M.: RSA-based partially blind signature with low computation. In: Proceedings of the eighth international conference on parallel and distributed systems, pp. 385–389 (2001)Google Scholar
  4. 4.
    Cao, T.J., et al.: A randomized RSA-based partially blind signature scheme for electronic cash. Computers & Security 24(1), 44–49 (2005)CrossRefGoogle Scholar
  5. 5.
    Shamir, A., Schnorr, C.P.: Cryptanalysis of certain variants of Rabin’s signature scheme. Information proceeding Letters 19, 113–115 (1984)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kwon, M.S., Cho, Y.K.: Randomization enhanced blind signature schemes based on RSA. IEICE A Fundam 2003 E86-A(3), 730–733 (2003)MathSciNetGoogle Scholar
  7. 7.
    Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Maitland, G., Boyd, C.: A provably secure restrictive partially blind signature scheme. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 99–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Huang, H.F., Chang, C.C.: A new design of efficient partially blind signature scheme. Journal of Systems and Software 73(3), 397–403 (2003)CrossRefGoogle Scholar
  10. 10.
    Fan, C.I., Lei, C.L.: Low-computation partially blind signatures for electronic cash. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences E81-A(5), 818–824 (1998)Google Scholar
  11. 11.
    Fan, C.I.: Improved low-computation partially blind signatures. Applied Mathematics and Computation 145(2-3), 853–867 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Zhang, F., et al.: Efficient Verifiably Encrypted Signature and Partially Blind Signature from Bilinear Pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Sherman, S.M., et al.: Two Improved Partially Blind Signature Schemes from Bilinear Pairings. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Schnorr, C.P.: Discrete log signatures against interactive attacks. In: Schmeck, H., Ungerer, T., Wolf, L. (eds.) ARCS 2002. LNCS, vol. 2299, pp. 1–12. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)Google Scholar
  16. 16.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptography 1, 77–94 (1988)MATHMathSciNetGoogle Scholar
  17. 17.
    Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–370. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zheng Gong
    • 1
  • Xiangxue Li
    • 1
  • Kefei Chen
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations