Advertisement

The d-Identifying Codes Problem for Vertex Identification in Graphs: Probabilistic Analysis and an Approximation Algorithm

  • Ying Xiao
  • Christoforos Hadjicostis
  • Krishnaiyan Thulasiraman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)

Abstract

Given a graph G(V, E), the identifying codes problem is to find the smallest set of vertices D ⊆ V such that no two vertices in V are adjacent to the same set of vertices in D. The identifying codes problem has been applied to fault diagnosis and sensor based location detection in harsh environments. In this paper, we introduce and study a generalization of this problem, namely, the d-identifying codes problem. We propose a polynomial time approximation algorithm based on ideas from information theory and establish its approximation ratio that is very close to the best possible. Using analysis on random graphs, several fundamental properties of the optimal solution to this problem are also derived.

Keywords

Equivalence Class Approximation Algorithm Greedy Algorithm Random Graph Approximation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollobás, B.: Random graphs. Academic Press Inc., London (1985)MATHGoogle Scholar
  2. 2.
    Brodie, M., Rish, I., Ma, S.: Optimizing probe selection for fault localization. In: International Workshop on Distributed Systems: Operations and Management (2001)Google Scholar
  3. 3.
    Das, A., Thulasiraman, K.: Diagnosis of t/s-diagnosable systems. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 193–205 (1990)Google Scholar
  4. 4.
    Das, A., Thulasiraman, K., Agarwal, V.: Diagnosis of t/(t+1)-diagnosable systems. SIAM J. Comput. 23(5), 895–905 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Frieze, A., Martin, R., Moncel, J., Ruszinkóand, K., Smyth, C.: Codes identifying sets of vertices in random networks. (submitted for publication, 2005)Google Scholar
  6. 6.
    Halldórsson, B.V., Halldórsson, M.M., Ravi, R.: On the approximability of the minimum test collection problem. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 158–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Janson, S., Luczak, T., Rucinski, A.: Random graphs. Wiley, New York (2000)MATHGoogle Scholar
  8. 8.
    Janson, S.: New versions of Suen’s correlation inequality. Random Struct. Algorithms 13(3-4), 467–483 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Karpovsky, M., Chakrabarty, K., Levitin, L.: On a new class of codes for identifying vertices in graphs. IEEE Trans. on Information Theory 44(2), 599–611 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Laifenfeld, M., Trachtenberg, A.: Disjoint identifying-codes for arbitrary graphs. In: IEEE Symposium on Information Theory (submitted, 2005) Google Scholar
  11. 11.
    Laihonen, T.: Optimal codes for strong identification. Eur. J. Comb. 23(3), 307–313 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Preparata, F., Metze, G., Chien, R.: On the connection assignment problem of diagnosiable systems. IEEE Trans. on Electronic Computers 16, 848–854 (1967)MATHCrossRefGoogle Scholar
  13. 13.
    Ray, S., Ungrangsi, R., Pellegrini, F., Trachtenberg, A., Starobinski, D.: Robust location detection in emergency sensor networks. In: INFOCOM (2003)Google Scholar
  14. 14.
    Suen, S.: A correlation inequality and a Poisson limit theorem for nonoverlapping balanced subgraphs of a random graph. Random Struct. Algorithms 1(2), 231–242 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ying Xiao
    • 1
  • Christoforos Hadjicostis
    • 2
  • Krishnaiyan Thulasiraman
    • 3
  1. 1.Packet Design Inc.Palo AltoUSA
  2. 2.University of Illinois at Urbana-ChampaignUSA
  3. 3.University of OklahomaNormanUSA

Personalised recommendations