Lower Bounds on the Approximation of the Exemplar Conserved Interval Distance Problem of Genomes

  • Zhixiang Chen
  • Richard H. Fowler
  • Bin Fu
  • Binhai Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)


In this paper we present several lower bounds on the approximation of the exemplar conserved interval distance problem of genomes. We first prove that the exemplar conserved interval distance problem cannot be approximated within a factor of clogn for some constant c>0 in polynomial time, unless P=NP. We then prove that it is NP-complete to decide whether the exemplar conserved interval distance between any two sets of genomes is zero or not. This result implies that the exemplar conserved interval distance problem does not admit any approximation in polynomial time, unless P=NP. In fact, this result holds even when a gene appears in each of the given genomes at most three times. Finally, we strengthen the second result under a weaker definition of approximation (which we call weak approximation). We show that the exemplar conserved interval distance problem does not admit a weak approximation within a factor of m, where m is the maximum length of the given genomes.


Polynomial Time Polynomial Time Algorithm Conjunctive Normal Form Interval Distance Weak Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Pevzner, P.: Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Mol. Bio. Evol. 12, 239–246 (1995)Google Scholar
  2. 2.
    Bereg, S., Zhu, B.: RNA multiple structural alignment with longest common subsequences. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 32–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Acad. Pub., Dordrecht (2000)Google Scholar
  6. 6.
    Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2004)Google Scholar
  8. 8.
    Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional alternatives in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–1480 (1988)Google Scholar
  10. 10.
    Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theoretical Computer Science 325(3), 347–360 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nguyen, C.T.: Algorithms for calculating exemplar distances, Honors Thesis, School of Computing, National University of Singapore (2005)Google Scholar
  12. 12.
    Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)CrossRefGoogle Scholar
  13. 13.
    Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evolut. 27, 87–97 (1988)CrossRefGoogle Scholar
  14. 14.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp. on Theory Comput (STOC 1997), pp. 475–484 (1997)Google Scholar
  15. 15.
    Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917 (1999)CrossRefGoogle Scholar
  16. 16.
    Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Nat. Acad. Sci. USA 22, 448–450 (1936)CrossRefGoogle Scholar
  17. 17.
    Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theoretical Biology 99, 1–7 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhixiang Chen
    • 1
  • Richard H. Fowler
    • 1
  • Bin Fu
    • 2
    • 3
  • Binhai Zhu
    • 4
  1. 1.Department of Computer ScienceUniversity of Texas-AmericanEdinburgUSA
  2. 2.Department of Computer ScienceUniversity of New OrleansNew Orleans
  3. 3.Research Institute for ChildrenNew OrleansUSA
  4. 4.Department of Computer ScienceMontana State UniversityBozemanUSA

Personalised recommendations