Enumerating Non-crossing Minimally Rigid Frameworks

  • David Avis
  • Naoki Katoh
  • Makoto Ohsaki
  • Ileana Streinu
  • Shin-ichi Tanigawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)


In this paper we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks (simply called non-crossing Laman frameworks) on a given generic set of n points. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n 4) time and O(n) space, or, with a slightly different implementation, in O(n 3) time and O(n 2) space. In particular, we obtain that the set of all non-crossing Laman frameworks on a given point set is connected by flips which remove an edge and then restore the Laman property with the addition of a non-crossing edge.


Search Tree Parent Function Outer Face Rigid Framework Rigid Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Rote, G., Speckmann, B., Streinu, I.: The zig-zag path of a pseudo-triangulation. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 377–388. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65(1-3), 21–46 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Berg, A., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 78–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Comput. Geom. Theory Appl. 23(3), 271–279 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bereg, S.: Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl. 30(3), 207–222 (2005)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Enumerating and counting pseudo-triangulations with the greedy flip algorithm. In: ALENEX, Vancouver, Canada (2005)Google Scholar
  9. 9.
    Dumitrescu, A., Gärtner, B., Pedroni, S., Welzl, E.: Enumerating triangulation paths. Comput. Geom. Theory Appli. 20(1-2), 3–12 (2001)zbMATHGoogle Scholar
  10. 10.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2. American Mathematical Society (1993)Google Scholar
  11. 11.
    Jacobs, D.J., Hendrickson, B.: An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comput. Physics 137, 346–365 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kaveh, A.: Structural Mechanics: Graph and Matrix Methods, 3rd edn. Research Studies Press, Somerset (2004)Google Scholar
  13. 13.
    Kawamoto, A., Bendsøe, M., Sigmund, O.: Planar articulated mechanism design by graph theoretical enumeration. Struct. Multidisc. Optim. 27, 295–299 (2004)CrossRefGoogle Scholar
  14. 14.
    Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics 4, 331–340 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lee, A., Streinu, I.: Pebble game algorihms and sparse graphs. In: Proc. EUROCOMB, Berlin (September 2005)Google Scholar
  16. 16.
    Lee, A., Streinu, I., Theran, L.: Finding and maintaining rigid components. In: Proc. Canad. Conf. Comp. Geom., Windsor, Canada (August 2005)Google Scholar
  17. 17.
    Ohsaki, M., Nishiwaki, S.: Shape design of pin-jointed multi-stable compliant mechanisms using snapthrough behavior. Struct. Multidisc. Optim. 30, 327–334 (2005)CrossRefGoogle Scholar
  18. 18.
    Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Boris Aronov, J.P., Basu, S., Sharir, M. (eds.) Discrete and Computational Geometry - The Goodman-Pollack Festschrift, Algorithms and Combinatorics, pp. 699–736. Springer, Berlin (2003)Google Scholar
  19. 19.
    Streinu, I.: Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom. 34, 587–635 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tay, T.S., Whiteley, W.: Generating isostatic frameworks. Structural Topology 11, 21–69 (1985)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Avis
    • 1
  • Naoki Katoh
    • 2
  • Makoto Ohsaki
    • 2
  • Ileana Streinu
    • 3
  • Shin-ichi Tanigawa
    • 2
  1. 1.School of Computer ScienceMcGill UniversityCanada
  2. 2.Department of Architecture and Architectural EngineeringKyoto UniversityKyotoJapan
  3. 3.Dept. of Comp. ScienceSmith CollegeNorthamptonUSA

Personalised recommendations