Advertisement

The Matrix Orthogonal Decomposition Problem in Intensity-Modulated Radiation Therapy

  • Xin Dou
  • Xiaodong Wu
  • John E. Bayouth
  • John M. Buatti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)

Abstract

In this paper, we study an interesting matrix decomposition problem that seeks to decompose a “complicated” matrix into two “simpler” matrices while minimizing the sum of the horizontal complexity of the first sub-matrix and the vertical complexity of the second sub-matrix. The matrix decomposition problem is crucial for improving the “step-and-shoot” delivery efficiency in Intensity-Modulated Radiation Therapy, which aims to deliver a highly conformal radiation dose to a target tumor while sparing the surrounding normal tissues. Our algorithm is based on a non-trivial graph construction scheme, which enables us to formulate the decomposition problem as computing a minimum s-t cut in a 3-D geometric multi-pillar graph. Experiments on randomly generated intensity map matrices and on clinical data demonstrated the efficiency of our algorithm.

Keywords

Directed Edge Decomposition Problem Base Vertex Vertical Complexity Total Edge Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boland, N., Hamacher, H.W., Lenzen, F.: Minimizing Beam-on Time in Cancer Radiation Treatment Using Multileaf Collimators. Networks 43(4), 226–240 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, Y., Hou, Q., Galvin, J.M.: A graph-searching method for MLC leaf sequencing under constraints. Med. Phys. 31, 1504–1511 (2004)CrossRefGoogle Scholar
  3. 3.
    Chen, D.Z., Hu, X.S., Luan, S., Wang, C.: Mountain Reduction, Block Matching, and Medical Applications. In: Proc. of the 21st Annual Symposium on Computational Geometry (SoCG), Pisa, Italy, pp. 35–44 (2005)Google Scholar
  4. 4.
    Chen, D.Z., Hu, X.S., Luan, S., Wang, C., Wu, X.: Geometric Algorithms for Static Leaf Sequencing Problems in Radiation Therapy. International Journal of Computational Geometry and Applications 14(5), 311–339 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dai, J., Zhu, Y.: Minimizing the Number of Segments in a Delivery Sequence for Intensity-Modulated Ratiation Therapy with Multileaf Collimator. Med. Phys. 28(10), 2113–2120 (2001)CrossRefGoogle Scholar
  6. 6.
    Dogan, N., Leybovich, L.B., Sethi, A., Emami, B.: Automatic Feathering of Split Fields for Step-and-Shoot Intensity Modulated Radiation Therapy. Phys. Med. Biol. 48, 1133–1140 (2003)CrossRefGoogle Scholar
  7. 7.
    Engel, K.: A New Algorithm for Optimal Multileaf Collimator Field Segmentation (March 2003), http://www.trinity.edu/aholder/HealthApp/oncology/papers/paperlist.html
  8. 8.
    Hardemark, B., Rehbinder, H., Lof, J.: Rotating the MLC Between Segments Improves Performance in step-andshoot IMRT delivery. In: The AAPM 45th Meeting, Med. Phys., August 10-14, vol. 30 (2003)Google Scholar
  9. 9.
    Kalinowski, T.: Reducing the number of monitor units in multileaf collimator field segmentation. Physics in Medicine and Biology 50, 1147–1161 (2005)CrossRefGoogle Scholar
  10. 10.
    Langer, M., Thai, V., Papiez, L.: Improved Leaf Sequencing Reduces Segments of Monitor Units Needed to Deliver IMRT Using Multileaf Collimators. Med. Phys. 28, 2450–2458 (2001)CrossRefGoogle Scholar
  11. 11.
    Potter, L.D., Chang, S.X., Cullip, T.J., Siochi, A.C.: A Quality and Efficiency Analysis of the IMFAST TM Segmentation Algorithm in Head and Neck “Step & Shoot” IMRT Treatments. Med. Phys. 29(3), 275–283 (2002)CrossRefGoogle Scholar
  12. 12.
    Que, W.: Comparison of Algorithms for Multileaf Collimator Field Segmentation. Med. Phys. 26, 2390–2396 (1999)CrossRefGoogle Scholar
  13. 13.
    Svensson, R., Kallman, P., Brahme, A.: An Analytical Solution for the Dynamic Control of Multileaf Collimation. Phys. in Med. and Biol. 39, 37–61 (1994)CrossRefGoogle Scholar
  14. 14.
    Webb, S.: The Physics of Conformal Radiotherapy Advances in Technology. Institute of Physics Publishing, Bristol (1997)CrossRefGoogle Scholar
  15. 15.
    Webb, S.: Intensity-Modulated Radiation Therapy, Institute of Cancer Research and Royal Marsden NHS Trust (January 2001)Google Scholar
  16. 16.
    Wu, X., Chen, D.Z.: Optimal Net Surface Problems with Applications. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. Wu, X., Chen, D.Z, vol. 2380, pp. 1029–1042. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Wu, Q., Arnfield, M., Tong, S., Wu, Y., Mohan, R.: Dynamic Splitting of Large Intensity-Modulated Fields. Phys. Med. Biol. 45, 1731–1740 (2000)CrossRefGoogle Scholar
  18. 18.
    Xia, P., Verhey, L.J.: MLC Leaf Sequencing Algorithm for Intensity Modulated Beams with Multiple Static Segments. Med. Phys. 25, 1424–1434 (1998)CrossRefGoogle Scholar
  19. 19.
    Boykov, Y., Jolly, M.-P.: Interactive Organ Segmentation Using Graph Cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Kim, J., Zabih, R.: A Segmentation Algorithm for Contrast-Enhanced Images. In: Proc. IEEE Int’l Conf. Computer Vision, pp. 502–509 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xin Dou
    • 1
  • Xiaodong Wu
    • 1
    • 2
  • John E. Bayouth
    • 2
  • John M. Buatti
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of IowaIowa CityUSA
  2. 2.Dept. of Radiation OncologyUniversity of IowaIowa CityUSA

Personalised recommendations