The Complexity of Black-Box Ring Problems

  • V. Arvind
  • Bireswar Das
  • Partha Mukhopadhyay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)


We study the complexity of some computational problems on finite black-box rings whose elements are encoded as strings of a given length and the ring operations are performed by a black-box oracle. We give a polynomial-time quantum algorithm to compute a basis representation for a given black-box ring. Using this result we obtain polynomial-time quantum algorithms for several natural computational problems over black-box rings.


Polynomial Time Basis Representation Minimal Polynomial Arithmetic Circuit Additive Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AKS04]
    Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. [AS05]
    Agrawal, M., Saxena, N.: Automorphisms of Finite Rings and Applications to Complexity of Problems. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 1–17. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. [Ba91]
    Babai, L.: Local Expansion of Vertex-Transitive Graphs and Random Generation in Finite Groups. In: STOC 1991, pp. 164–174 (1991)Google Scholar
  4. [Ba92]
    Babai, L.: Bounded Round Interactive Proofs in Finite Groups. SIAM J. Discrete Math. 5(1), 88–111 (1992)MATHCrossRefMathSciNetGoogle Scholar
  5. [BDG88a]
    Balcázar, J.L., Díaz, J., Gabarró, D.: Structural Complexity I. ETACS Monographs on Theoretical Computer Science. Springer, Heidelberg (1988) (I)Google Scholar
  6. [BDG88b]
    Balcázar, J.L., Díaz, J., Gabarró, D.: Structural Complexity II. ETACS Monographs on Theoretical Computer Science. Springer, Heidelberg (1990) (II)Google Scholar
  7. [BM88]
    Babai, L., Moran, S.: Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes. Journal Comput. Syst. Sciences 36(2), 254–276 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. [BMc74]
    McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)MATHGoogle Scholar
  9. [BS84]
    Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc. 25th IEEE Sympos. on the Foundation of Computer Science, pp. 229–240 (1984)Google Scholar
  10. [BV97]
    Vazirani, U., Bernstein, E.: Quantum Complexity Theory. Special issue on Quantum Computation of the Siam Journal of Computing (October 1997)Google Scholar
  11. [CM01]
    Cheung, K.K.H., Mosca, M.: Decomposing Finite Abelian Groups. Los Alamos Preprint Archive, quant-ph/0101004 (2001)Google Scholar
  12. [Ebr89]
    Eberly, W.: Computations for algebras and group representations, PhD thesis. University of Toronto (1989)Google Scholar
  13. [FR85]
    Friedl, K., Rónyai, L.: Polynomial time solutions for some problems in computational algebra. In: Proc. 17th Ann. Symp. Theory of Computing, pp. 153–162 (1985)Google Scholar
  14. [KS05]
    Kayal, N., Saxena, N.: On the Ring Isomorphism and Automorphism Problems. In: IEEE Conference on Computational Complexity, pp. 2–12 (2005)Google Scholar
  15. [Le92]
    Lenstra Jr., H.W.: Algorithms in algebraic number theory. Bulletin of the AMS 26(2), 211–244 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. [Shor97]
    Shor, P.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. [SS97]
    Sanders, T., Shokrollahi, M.A.: Deciding properties of polynomials without factoring. In: Proc. 38th IEEE Foundations of Computer Science, pp. 46–55 (1997)Google Scholar
  18. [VZG03]
    Gathen, J.v.z., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V. Arvind
    • 1
  • Bireswar Das
    • 1
  • Partha Mukhopadhyay
    • 1
  1. 1.Institute of Mathematical SciencesChennaiIndia

Personalised recommendations