Advertisement

Varieties Generated by Certain Models of Reversible Finite Automata

  • Marats Golovkins
  • Jean-Eric Pin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)

Abstract

Reversible finite automata with halting states (RFA) were first considered by Ambainis and Freivalds to facilitate the research of Kondacs-Watrous quantum finite automata. In this paper we consider some of the algebraic properties of RFA, namely the varieties these automata generate. Consequently, we obtain a characterization of the boolean closure of the classes of languages recognized by these models.

Keywords

Regular Language Finite Automaton Group Language Finite Semigroup Inverse Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore (1994)MATHGoogle Scholar
  2. 2.
    Almeida, J., Pin, J.E., Weil, P.: Semigroups whose Idempotents Form a Subsemigroup. Math. Proc. Camb. Phil. Soc. 111, 241–253 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D.: Algebraic Results on Quantum Automata. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 93–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ambainis, A., Bonner, R.F., Freivalds, R., Ķikusts, A.: Probabilities to Accept Languages by Quantum Finite Automata. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 174–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Ambainis, A., Freivalds, R.: 1-Way Quantum Finite Automata: Strengths, Weaknesses and Generalizations. In: Proc. 39th FOCS, pp. 332–341 (1998)Google Scholar
  6. 6.
    Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense Quantum Coding and Quantum Finite Automata. Journal of the ACM 49(4), 496–511 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ash, C.J.: Finite Semigroups with Commuting Idempotents. J. Austral. Math. Soc. (Series A) 43, 81–90 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bertoni, A., Mereghetti, C., Palano, B.: Quantum Computing: 1-Way Quantum Finite Automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Brodsky, A., Pippenger, N.: Characterizations of 1-Way Quantum Finite Automata. SIAM Journal on Computing 31(5), 1456–1478 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kondacs, A., Watrous, J.: On The Power of Quantum Finite State Automata. In: Proc. 38th FOCS, pp. 66–75 (1997)Google Scholar
  12. 12.
    Margolis, S.W., Pin, J.E.: Inverse Semigroups and Varieties of Finite Semigroups. Journal of Algebra 110, 306–323 (1987)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Moore, C., Crutchfield, J.P.: Quantum Automata and Quantum Grammars. Theoretical Computer Science 237(1-2), 275–306 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nayak, A.: Optimal Lower Bounds for Quantum Automata and Random Access Codes. In: Proc. 40th FOCS, pp. 369–377 (1999)Google Scholar
  15. 15.
    Pin, J.E.: Varieties of Formal Langages. North Oxford, London and Plenum, New York (1986)Google Scholar
  16. 16.
    Pin, J.E.: On the Languages Accepted by Finite Reversible Automata. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 237–249. Springer, Heidelberg (1987)Google Scholar
  17. 17.
    Pin, J.E.: On Reversible Automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  18. 18.
    Pin, J.E.: Eilenberg’s Theorem for Positive Varieties of Languages. Russian Mathematics (Iz. VUZ) 39(1), 80–90 (1995)MathSciNetGoogle Scholar
  19. 19.
    Pin, J.E., Weil, P.: Semidirect Products of Ordered Semigroups. Communications in Algebra 30(1), 149–169 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pin, J.E., Weil, P.: The Wreath Product Principle for Ordered Semigroups. Communications in Algebra 30(12), 5677–5713 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Polák, L.: Syntactic Semiring of a Language. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 611–620. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Preston, G.B.: Inverse Semi-groups with Minimal Right Ideals. J. London Math. Soc. 29, 404–411 (1954)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Vagner, V.V.: Generalized Groups. Dokl. Akad. Nauk SSSR 84(6), 1119–1122 (1952)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marats Golovkins
    • 1
  • Jean-Eric Pin
    • 2
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia
  2. 2.LIAFAUniversité Paris VII and CNRSParisFrance

Personalised recommendations