Survey on Dependable IP over Fiber Networks

  • Maciej Kurant
  • Hung X. Nguyen
  • Patrick Thiran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4028)


This paper gives a survey of the techniques for failure location, protection and restoration in IP over optical fiber networks.

The first part of the paper reviews failure location algorithms at the optical and the IP layers. We classify the failure location algorithms at the optical layer into two main categories: the model based approach, that builds an abstract model of the network and uses this model to diagnose failures, and the learning based approach, that views the network as a black box and diagnoses failures using a set of rules obtained either by learning or by the expertise of the human manager. At the IP layer, we focus on the location of one of the main sources of failure: lossy links. The lossy link location algorithms can also be classified into two categories: the correlation approach, that requires strong correlation between monitoring packets, and the simple tomography approach, that requires some knowledge of the distribution of lossy links.

The second part of the paper describes the main strategies that ensure survivability in IP-over-fiber networks. After a failure, traffic can be restored either at the optical layer or at the IP layer. Protection at the optical layer amounts to dedicate some lightpaths to reroute the traffic disrupted by the failure. Restoration at the IP layer eliminates the need to set up back-up optical paths, but requires to map the IP layer on the optical layer in a survivable way. We describe the most common approaches achieving this.


Optical Network Internet Protocol Wavelength Division Multiplex Voice Over Internet Protocol Wavelength Division Multiplex Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.N., Diot, C.: Characterization of Failures in an IP Backbone. In: Proceedings of the IEEE INFOCOM 2004 (2004)Google Scholar
  2. 2.
    Abek, F., Hegerin, H., Neumair, B.: Integrated Management of Networked Systems. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  3. 3.
    Mas, C., Thiran, P.: An efficient algorithm for locating soft and hard failures in WDM network. JSAC special issue on Protocols and Architectures for next generation optical WDM networks 18, 1900–1911 (2000)Google Scholar
  4. 4.
    Mas, C., Nguyen, H.X., Thiran, P.: Failure location in WDM networks. In: Optical WDM Networks: Past Lessons and Path Ahead. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  5. 5.
    ITU-T COM 15 121: Signal Quality Monitoring in Optical networks (1999)Google Scholar
  6. 6.
    Anritsu: Catalog of measuring instrument (1993)Google Scholar
  7. 7.
    ITU-T Rec.G.872. Architecture of Optical Transport Networks (1998)Google Scholar
  8. 8.
    ITU-T Rec.G.806. Characteristics of Transport Equipment - Description Methodology and Generic Functionality (2000)Google Scholar
  9. 9.
    Wautersa, N., Ocahoglu, G., Struyve, K., Falcao, P.: Survivability in a new pan-european carrier’s network based on WDM and SDH technology: Current implementations and future requirements. IEEE Communication Magazine 37(8), 63–69 (1999)CrossRefGoogle Scholar
  10. 10.
    Tao, W., Somani, A.K.: Attack monitoring and monitor placement in all-optical networks. In: Proceedings of IEEE GBN 2001 (2001)Google Scholar
  11. 11.
    Kilper, D., Bach, R., Blumenthal, D.J., Einstein, D., Landolsi, T., Ostar, L., Preiss, M., Willner, A.E.: Optical performance monitoring. Journal of Lightwave Technology 22, 294–304 (2004)CrossRefGoogle Scholar
  12. 12.
    Rao, N.S.V.: Computational complexity issues in operative dianosis of graph based systems. IEEE Transactions on Computers 42, 447–457 (1993)CrossRefGoogle Scholar
  13. 13.
    Nguyen, H.X., Thiran, P.: Failure location in all optical networks: the assymetry between false and missing alarms. In: Proceedings of ITC, vol. 19 (2005)Google Scholar
  14. 14.
    Ducatelle, F., Gambardella, L.M., Kurant, M., Nguyen, H.X., Thiran, P.: Algorithms for Failure Protection in Large IP-over-fiber and Wireless Ad Hoc Networks. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Systems: Software, Computing, Networks. LNCS, vol. 4028, pp. 231–259. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Katzela, I., Schwartz, M.: Scheme for fault identification in communication networks. IEEE/ACM Transaction on Networking 3 (1995)Google Scholar
  16. 16.
    Wang, C., Schwart, M.: Identification of faulty links in dynamics-routed networks. IEEE Journal on selected Areas in Communications, 1449–1460 (1993)Google Scholar
  17. 17.
    Li, C.S., Ramaswami, R.: Fault Detection and Isolation in transparent All-Optical Networks. In: IBM Research Report. Volume RC-20028 (1995)Google Scholar
  18. 18.
    Bouloutas, A., Hart, G., Schwartz, M.: Fault identification using a fsm model with unreliable partially observed data sequences. IEEE Transactions on Communications 41, 1074–1083 (1993)MATHCrossRefGoogle Scholar
  19. 19.
    Gu, K., et al.: Realization of an expert system for an online fault diagnosis and restoration in a bulk power system. In: Proc. 4th International Symposium expert Systems Application Power Systems (1993)Google Scholar
  20. 20.
    Brugnoni, S., et al.: An expert system for rel time fault diagnosis of the italian communications network. In: Proceedings of Integrated network management, vol. 3, pp. 617–628 (1993)Google Scholar
  21. 21.
    Jakobson, G., Weissman, M.E., Brenner, L., Lafond, C., Matheus, C.: Grace: Building next generation event correlation services. In: EEE/IFIP: Network Operations and Management Symposium NOMS 2000 (2000)Google Scholar
  22. 22.
    Lewis, L.: A case-based reasoning approach to the resolution of faults in communications networks. Integrated network management III, 671–682 (1993)Google Scholar
  23. 23.
    Maki, Y., Loparo, K.A.: Neural network approach to fault detetin and diagnosis in industrial processes. IEEE Transactions on Control Systems Technology 5(6), 529–541 (2001)CrossRefGoogle Scholar
  24. 24.
    Rodriguez, C., Rementeria, S., Martin, J., Lafuente, A., Perez, J.: A modular neural network approach to fault diagnosis. IEEE Transactions on Neural Networks (March 1996)Google Scholar
  25. 25.
    Ho, L., Cavuto, D., Papavassilou, S., Zawadzki, A.: Adaptive and automated detection of service anomalies in transaction-oriented wans. IEEE Journal on Selected Areas Communications 18(5), 744–757 (2000)CrossRefGoogle Scholar
  26. 26.
    Jakobson, G., Weissman, M.E.: Alarm correlation. IEEE Network, 52–59 (1993)Google Scholar
  27. 27.
    Hood, C., Ji, C.: Proactive network-fault detection. IEEE Transactions on reliability 46(3) (September 2000)Google Scholar
  28. 28.
    Lin, A.: A hybrid approach to fault diagnosis in network and system management. HP Technical Report (1998)Google Scholar
  29. 29.
    Gardner, R., Harle, D.: Alarm correlation and nerwork fault resolution using kohonen self-organising map. In: proceedings of Globecom 1997, pp. 1398–1402 (1997)Google Scholar
  30. 30.
    Stallings, W.: SNMP, SNMPv2, SNMPv3 and RMON 1 and 2. Addision-Wesley Longman Inc., Redwood City (1999)Google Scholar
  31. 31.
    Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins of internet flow rates. In: Proceedings of the ACM SIGCOMM Conference (2002)Google Scholar
  32. 32.
    Choi, B.Y., Moon, S., Zhang, Z.L., Papagiannaki, K., Diot, C.: Analysis of point-to-point packet delay in an operatinal network. In: Proceedings of the INFOCOM (2004)Google Scholar
  33. 33.
    Paxson, V.: Measurement and Analysis of End-to-End Internet Dynamics. PhD thesis, Univ. of Cal., Berkeley (1997)Google Scholar
  34. 34.
    Almes, G., Kalidini, S., Zekauskas, M.: A one-way delay metric for IPPM. IETF, IP Performance metrics, request for comments: 2680 (1999)Google Scholar
  35. 35.
    ITU-T Rec.: G.113. [G.113 Appendix I (05/02)] Provisional planning values for the equipment impairment factor Ie and packet-loss robustness factor Bpl (2002)Google Scholar
  36. 36.
    Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behaviour of the TCP congestion avoidance algorithm. Computer Communication Review 27 (1997)Google Scholar
  37. 37.
    Tao, V., Xu, K., Estepa, A., Fei, T., Gao, L., Guerin, R., Kurose, J., Towsley, D., Zhang, Z.L.: Improving voip quality through path switching. Proceedings of IEEE Infocom (March 2005)Google Scholar
  38. 38.
    Duffield, N.: Simple network perormance tomography. In: Proceedings of the IMC 2003, Miami Beach, Florida (2003)Google Scholar
  39. 39.
    Caceres, R., Duffield, N.G., Horowitz, J., Towsley, D.: Multicast-based inference of network-internal loss characteristics. IEEE Transactions on Information Theory 45, 2462–2480 (1999)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Coates, M., Nowak, R.: Network loss inference using unicast end-to-end measurement. In: Proceedings of the ITC Seminar on IP Traffic, Measurements and Modelling, Monterey (2000)Google Scholar
  41. 41.
    Duffield, N., Presti, F.L., Paxson, V., Towsley, D.: Inferring link loss using striped unicast probes. In: Proceedings of the IEEE Infocom 2001, Alaska (2001)Google Scholar
  42. 42.
    Padmanabhan, V.N., Qiu, L., Wang, H.J.: Server-based inference of internet performance. In: Proceedings of the IEEE INFOCOM 2003, San Francisco, CA (2003)Google Scholar
  43. 43.
    Zang, H., Jue, J.P., Mukherjee, B.: A review of routing and wavelength assignment approaches for wavelength-routed optical wdm networks. SPIE Optical Networks Magazine 1, 47–60Google Scholar
  44. 44.
    Sahasrabuddhe, L., Ramamurthy, S., Mukherjee, B.: Fault management in IP-Over-WDM Networks: WDM Protection vs. IP Restoration. IEEE Journal on Selected Areas in Communications 20, 21–33 (2002)CrossRefGoogle Scholar
  45. 45.
    Demeester, P., et al.: Resilience in multilayer networks. IEEE Communications Magazine, 70–75 (August 1999)Google Scholar
  46. 46.
    Colle, D., et al.: Data-centric optical networks and their survivability. IEEE Journal on Selected Areas in Communications 20, 6–20 (2002)CrossRefGoogle Scholar
  47. 47.
    Zhang, H., Durresi, A.: Differentiated Multi-Layer Survivability in IP/WDM Networks. In: Proceeding of Network Operations and Management Symposium (2002)Google Scholar
  48. 48.
    Fumagalli, A., Valcarenghi, L.: IP Restoration vs. WDM Protection: Is There an Optimal Choice? IEEE Network (2000)Google Scholar
  49. 49.
    Iannaccone, G., Chuah, C.N., Bhattacharyya, S., Diot, C.: Feasibility of IP restoration in a tier-1 backbone. (Sprint ATL Research Report Nr. RR03-ATL-030666)Google Scholar
  50. 50.
    Nucci, A., Taft, N., Barakat, C., Thiran, P.: Controlled use of excess backbone bandwidth for providing new services in IP-over-WDM networks. IEEE Journal on Selected Areas in Communications JSAC-22, 1692–1707 (2004)CrossRefGoogle Scholar
  51. 51.
    Gerstel, O., Ramaswami, R.: Optical Layer Survivability-An Implementation Perspective. IEEE Journal on Selected Areas in Communications 18, 1885–1923 (2000)CrossRefGoogle Scholar
  52. 52.
    Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part I - Protection. In: Proc. of IEEE INFOCOM 1999 (1999)Google Scholar
  53. 53.
    Mohan, G., Somani, A.K.: Routing dependable connections with specified failure restoration guarantess in WDM networks. In: Proc. of IEEE INFOCOM 2002 (2002)Google Scholar
  54. 54.
    Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part II - Restoration. In: Proc. of IEEE ICC 1999 (1999)Google Scholar
  55. 55.
    Modiano, E., Narula-Tam, A.: Survivable lightpath routing: a new approach to the design of WDM-based networks. IEEE Journal on Selected Areas in Communications 20, 800–809 (2002)CrossRefGoogle Scholar
  56. 56.
    Armitage, J., Crochat, O., Boudec, J.Y.L.: Design of a Survivable WDM Photonic Network. In: Proceedings of IEEE INFOCOM 1997 (1997)Google Scholar
  57. 57.
    Lee, H., Choi, H., Subramaniam, S., Choi, H.A.: Survival Embedding of Logical Topology in WDM Ring Networks. Information Sciences: An International Journal, Special Issue on Photonics, Networking and Computing (2002)Google Scholar
  58. 58.
    Lee, H., Choi, H., Choi, H.A.: Restoration in IP over WDM optical networks. In: Proceedings of the 30th ICPP Workshop on Optical Networks (2001)Google Scholar
  59. 59.
    Sen, A., Hao, B., Shen, B., Lin, G.: Survivable routing in WDM networks logical ring in arbitrary physical topology. In: Proceedings of the IEEE International Communication Conference ICC 2002 (2002)Google Scholar
  60. 60.
    Giroire, F., Nucci, A., Taft, N., Diot, C.: Increasing the Robustness of IP Backbones in the Absence of Optical Level Protection. In: Proc. of IEEE INFOCOM 2003 (2003)Google Scholar
  61. 61.
    Leonardi, E., Mellia, M., Marsan, M.A.: Algorithms for the Logical Topology Design in WDM All-Optical Networks. Optical Networks Magazine (2000)Google Scholar
  62. 62.
    Glover, F., Taillard, E., Werra, D.: A user’s guide for tabu search. Annals of Operations Research, 3–28 (1993)Google Scholar
  63. 63.
    Crochat, O., Boudec, J.Y.L.: Design Protection for WDM Optical Networks. IEEE Journal of Selected Areas in Communication 16, 1158–1165 (1998)CrossRefGoogle Scholar
  64. 64.
    Nucci, A., Sansò, B., Crainic, T., Leonardi, E., Marsan, M.A.: Design of Fault-Tolerant Logical Topologies in Wavelength-Routed Optical IP Networks. In: Proc. of IEEE Globecom 2001 (2001)Google Scholar
  65. 65.
    Ducatelle, F., Gambardella, L.: Survivable routing in ip-over-wdm networks: An efficient and scalable local search algorithm. Optical Switching and Networking (to appear, 2005) Google Scholar
  66. 66.
    Kurant, M., Thiran, P.: Survivable Mapping Algorithm by Ring Trimming (SMART) for large IP-over-WDM networks. In: Proc. of BroadNets 2004 (2004)Google Scholar
  67. 67.
    Kurant, M., Thiran, P.: On survivable routing of mesh topologies in IP-over-WDM networks. In: Proc. of IEEE INFOCOM 2005 (2005)Google Scholar
  68. 68.
    Li, G., Doverspike, B., Kalmanek, C.: Fiber Span Failure Protection in Mesh Optical Networks. Optical Networks Magazine 3, 21–31 (2002)Google Scholar
  69. 69.
    Zang, H., Ou, C., Mukherjee, B.: Path-protection routing and wavelength-assignment (rwa) in wdm mesh networks under duct-layer constraints. IEEE/ACM Transactions on Networking 11, 248–258 (2003)CrossRefGoogle Scholar
  70. 70.
    Kim, S., Lumetta, S.: Addressing node failures in all-optical networks. Journal of Optical Networking 1, 154–163 (2002)Google Scholar
  71. 71.
    Choi, H., Subramaniam, S., Choi, H.A.: On Double-Link Failure Recovery in WDM Optical Networks. In: Proc. of IEEE INFOCOM 2002 (2002)Google Scholar
  72. 72.
    He, W., Sridharan, M., Somani, A.K.: Capacity Optimization for Surviving Double-Link Failures in Mesh-Restorable Optical Networks. In: Proc. of OptiComm 2002 (2002)Google Scholar
  73. 73.
    Clouqueur, M., Grover, W.D.: Mesh-restorable Networks with Complete Dual-failure Restorability and with Selectively Enhanced Dual-failure Restorability Properties. In: Proc. of OptiComm 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maciej Kurant
    • 1
  • Hung X. Nguyen
    • 1
  • Patrick Thiran
    • 1
  1. 1.LCA-School of Communications and Computer Sciencs, EPFLLausanneSwitzerland

Personalised recommendations