Perturbative Time and Frequency Allocations for RFID Reader Networks

  • Vinay Deolalikar
  • Malena Mesarina
  • John Recker
  • Salil Pradhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4097)


RFID reader networks often have to operate in frequency and time constrained regimes. One approach to the allocation of frequency and time to various readers in such regimes is to perturb the network slightly so as to ease the constraints. We investigate how to perform these perturbations in a manner that is profitable from time and frequency allocation point of view.


Schedule Problem Bipartite Graph Planar Graph Chromatic Number Bipartite Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brooks, R.: On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37, 194–197 (1941)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Deolalikar, V., Mesarina, M., Pradhan, S., Recker, J.: Optimal Scheduling for Networks of RFID Readers. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 1025–1035. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Edwards, C.: Some extremal properties of bipartite subgraphs. Canad. J. Math. 3, 475–485 (1973)CrossRefGoogle Scholar
  4. 4.
    Engels, D.: The Reader Collision Problem, Technical Report, Available at:
  5. 5.
    Erdös, P.: On some extremal problems in graph theory. Israel J. Math. 3, 113–116 (1965)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Erdos, P.: Graph Theory and Probability - II. Canad. J. Math. 13, 346–352 (1961)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Erdös, P., Faudree, R., Pach, J., Spencer, J.: How to make a graph bipartite. J. Comb. Theory (B) 45, 86–98 (1988)MATHCrossRefGoogle Scholar
  8. 8.
    Goemans, M., Williamson, D.: Primal-Dual approximation technique for constrained forest problems. SIAM J. Computing 24, 296–317 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Computing 4(3), 221–225 (1975)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  11. 11.
    Malesinska, E.: Graph-Theoretical Models for Frequency Assignment Problems. Ph.D. thesis, Technischen Universität Berlin (1997)Google Scholar
  12. 12.
    Shearer, J.: A note on bipartite subgraphs of triangle-free graphs. Random Structures and Algorithms 3, 223–226 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Waldrop, J., Engels, D.W., Sarma, S.E.: Colorwave: An Anticollision Algorithm for the Reader Collision Problem. IEEE International Conference Communications ICC 2003, May 11-15, vol. 2, pp. 1206–1210 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vinay Deolalikar
    • 1
  • Malena Mesarina
    • 1
  • John Recker
    • 1
  • Salil Pradhan
    • 1
  1. 1.Hewlett-Packard LabsPalo AltoUSA

Personalised recommendations