Energy Comparison of AES and SHA-1 for Ubiquitous Computing

  • Jens-Peter Kaps
  • Berk Sunar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4097)


Wireless sensor networks and Radio Frequency Identifiers are becoming mainstream applications of ubiquitous computing. They are slowly being integrated into our infrastructure and therefore must incorporate a certain level of security. However, both applications are severely resource constrained. Energy scavenger powered sensor nodes and current RFID tags provide only 20 μ W to 50 μ W of power to the digital component of their circuits. This makes complex cryptography a luxury. In this paper we present a novel ultra-low power SHA-1 design and an energy efficient ultra-low power AES design. Both consume less than 30 μ W of power and can therefore be used to provide the basic security services of encryption and authentication. Furthermore, we analyze their energy consumption based on the TinySec protocol and come to the somewhat surprising result, that SHA-1 based authentication and encryption is more energy efficient than using AES for payload sizes of 17 bytes or larger.


Clock Cycle Ubiquitous Computing Block Cipher Advance Encryption Standard Message Authentication Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Meininger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., Lang, J.: Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(1), 64–76 (2001)CrossRefGoogle Scholar
  2. 2.
    Amirtharajah, R., Chandrakasan, A.P.: Self-powered signal processing using vibration-based power generation. IEEE Journal of Solid-State Circuits 33(5), 687–695 (1998)CrossRefGoogle Scholar
  3. 3.
    Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: security protocols for sensor networks. Wireless Networks 8(5), 521–534 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Karlof, C., Sastry, N., Wagner, D.: TinySec: A link layer security architecture for wireless sensor networks. In: Second ACM Conference on Embedded Networked Sensor Systems (SenSys 2004), pp. 162–175. ACM Press, New York (2004)CrossRefGoogle Scholar
  5. 5.
    National Institute of Standards and Technology (NIST) FIPS Publication 197: Advanced Encryption Standard (AES) (2001)Google Scholar
  6. 6.
    Law, Y., Doumen, J., Hartel, P.: Benchmarking block ciphers for wireless sensor networks. In: IEEE International Conference on Mobile Ad-hoc and Sensor Systems, pp. 447–456 (2004)Google Scholar
  7. 7.
    Luo, X., Zheng, K., Pan, Y., Wu, Z.: Encryption algorithms comparisons for wireless networked sensors. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1142–1146 (2004)Google Scholar
  8. 8.
    Prasithsangaree, P., Krishnamurthy, P.: Analysis of energy consumption of RC4 and AES algorithms in wireless LANs. In: GLOBECOM 2003, vol. 3, pp. 1445–1449. IEEE, Los Alamitos (2003)Google Scholar
  9. 9.
    Mangard, S., Aigner, M., Dominikus, S.: A highly regular and scalable AES hardware architecture. IEEE Transactions on Computers 52(4), 483–491 (2003)CrossRefGoogle Scholar
  10. 10.
    Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 427–440. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. Information Security, IEE Proceedings 152(1), 13–20 (2005)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Yin, Y.L., Yu, H.: Collision search attacks on SHA1. Internet (2005)Google Scholar
  14. 14.
    Grembowski, T., Lien, R., Gaj, K., Nguyen, N., Bellows, P., Flidr, J., Lehman, T., Schott, B.: Comparative analysis of the hardware implementations of hash functions SHA-1 and SHA-512. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 75–89. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    National Institute of Standards and Technology (NIST) FIPS Publication 198: The Keyed-Hash Message Authentication Code (HMAC) (2002)Google Scholar
  16. 16.
    Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Discrete Mathematics and its Appications, vol. 36. Chapman & Hall/CRC (2005)Google Scholar
  17. 17.
    National Institute of Standards and Technology (NIST) FIPS Publication 81: DES modes of operation (1980)Google Scholar
  18. 18.
    National Institute of Standards and Technology (NIST) FIPS Publication 113: Computer Data Authentication (1985)Google Scholar
  19. 19.
    National Institute of Standards and Technology NIST SP 800-38B: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication (2005)Google Scholar
  20. 20.
    Handschuh, H., Naccache, D.: SHACAL. Submission to the NESSIE project, Gemplus, F-92447 Issy-les-Moulineaux, France (2000)Google Scholar
  21. 21.
    Handschuh, H., Naccache, D.: SHACAL: a family of block ciphers. Submission to the NESSIE project, Gemplus, F-92447 Issy-les-Moulineaux, France (2001)Google Scholar
  22. 22.
    Handschuh, H., Knudsen, L.R., Robshaw, M.J.: Analysis of SHA-1 in encryption mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Saarinen, M.J.O.: Cryptanalysis of block ciphers based on SHA-1 and MD5. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 36–44. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    National Institute of Standards and Technology (NIST) FIPS Publication 180-2: Secure Hash Standard (SHS) (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jens-Peter Kaps
    • 1
  • Berk Sunar
    • 1
  1. 1.Department of Electrical & Computer EngineeringWorcester Polytechnic InstituteWorcesterU.S.A.

Personalised recommendations