COBRAS: Cooperative CBR System for Bibliographical Reference Recommendation

  • Hager Karoui
  • Rushed Kanawati
  • Laure Petrucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)


In this paper, we describe a cooperative P2P bibliographical data management and recommendation system (COBRAS). In COBRAS, each user is assisted by a personal software agent that helps her/him to manage bibliographical data and to recommend new bibliographical references that are known by peer agents. Key problems are:

– how to obtain relevant references?

– how to choose a set of peer agents that can provide the most relevant recommendations?

Two inter-related case-based reasoning (CBR) components are proposed to handle both of the above mentioned problems. The first CBR is used to search, for a given user’s interest, a set of appropriate peers to collaborate with. The second one is used to search for relevant references from the selected agents. Thus, each recommender agent proposes not only relevant references but also some agents which it judges to be similar to the initiator agent. Our experiments show that using a CBR approach for committee and reference recommendation allows to enhance the system overall performances by reducing network load (i.e. number of contacted peers, avoiding redundancy) and enhancing the relevance of computed recommendations by reducing the number of noisy recommendations.


Relevant Reference Reputation Score Keyword List Initiator Agent Interesting Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  2. 2.
    Balfe, E., Smyth, B.: Case-based collaborative web search. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 489–503. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Broekstra, J., Ehrig, M., Haase, P., Harmelen, F., Menken, M., Mika, P., Schnizler, B., Siebes, R.: Bibster -a semantics-based bibliographic peer-to-peer system. In: Proceedings of SemPGRID 2004, 2nd Workshop on Semantics in Peer-to-Peer and Grid Computing, New York, USA, May 2004, pp. 3–22 (2004)Google Scholar
  4. 4.
    Burke, R.: Hybrid recommender systems with case-based reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 91–105. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks. In: Proceedings of ACM Networks and Operating System Support for Digital And Video NOSSDAV 2003, Monterey, CA (2003)Google Scholar
  6. 6.
    Haase, P., Siebes, R., Harmelen, F.: Peer selection in peer-to-peer networks with semantic topologies. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra, S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 108–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Jaczynski, M., Trousse, B.: www assisted browsing by reusing past navigations of a group of users. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 160–171. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Kanawati, R., Malek, M.: Informing the design of shared bookmark systems. In: Proceedings of RIAO 2000: Content-based Multimedia Information Access (2000)Google Scholar
  9. 9.
    Kanawati, R., Malek, M.: Cowing: A collaborative bookmark management system. In: Klusch, M., Zambonelli, F. (eds.) CIA 2001. LNCS (LNAI), vol. 2182, pp. 34–39. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Karoui, H., Kanawati, R., Petrucci, L.: An intelligent peer-to-peer multi-agent system for collaborative management of bibliographic databases. In: Proceedings of the 9th UK Workshop on Case-Based Reasoning, Queens’ College, Cambridge, UK, December 2004, pp. 43–50 (2004)Google Scholar
  11. 11.
    Karoui, H.: Agent RàPC pour la gestion coopérative de bases bibliographiques personnelles. In: Plate-forme AFIA’ 2005, 13 ème atelier de Raisonnement à Partir de Cas, Nice, FRANCE (May 2005)Google Scholar
  12. 12.
    McGinty, L., Smyth, B.: Collaborative case-based reasoning: Applications in personalised route planning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 362–376. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Ontanon, S., Plaza, E.: Learning to form dynamic committees. In: Proceedings of the second international joint conference on Autonomous Agents and Multi-Agent Systems, Melbourne, Australia, pp. 504–511. ACM Press, New York (2003)CrossRefGoogle Scholar
  14. 14.
    Plaza, E., Arcos, J.L., Martin, F.: Cooperation modes among case-based reasoning agents. In: Proceedings of ECAI 1996 Workshop on Learning in Distributed Artificial Intelligence Systems (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hager Karoui
    • 1
  • Rushed Kanawati
    • 1
  • Laure Petrucci
    • 1
  1. 1.LIPN, CNRS UMR 7030Université Paris XIIIVilletaneuseFrance

Personalised recommendations