Advertisement

The PwC Connection Machine: An Adaptive Expertise Provider

  • Mehmet H. Göker
  • Cynthia Thompson
  • Simo Arajärvi
  • Kevin Hua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)

Abstract

The Connection Machine helps PricewaterhouseCoopers LLP (PwC) partners and staff to solve problems by connecting people to people. It allows information seekers to enter their question in free text, finds knowledgeable colleagues, forwards the question to them, obtains the answer and sends it back to the seeker. In the course of this interaction, the application unobtrusively learns and updates user profiles and thereby increases its routing accuracy. The Connection Machine combines features of expertise locators, adaptive case-based recommender systems and question answering applications. This document describes the core technology that supports the workflow, the user modeling and the retrieval technology of the Connection Machine.

Keywords

Recommender System User Profile Term Weight Information Seeker Directory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kautz, H., Selman, B., Milewski, A.: Agent Amplified Communication. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI 1996, Portland, Oregon, pp. 3–9. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    Ackerman, M., Pipek, V., Wulf, V. (eds.): Sharing Expertise: Beyond Knowledge Management. MIT Press, Cambridge (2003)Google Scholar
  3. 3.
    American Productivity & Quality Center (APQC), Expertise Locator Systems: Finding the Answers, Benchmarking Report, APQC Publications, Houston, Texas (2003), www.apqc.org
  4. 4.
    Becerra-Fernandez, I., Wang, T., Agha, G., Sin, T.: Actor Model and Knowledge Management Systems: Social Interaction as a Framework for Knowledge Integration. In: Althoff, K.-D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T.R. (eds.) WM 2005. LNCS (LNAI), vol. 3782, pp. 19–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    McDonald, D., Ackerman, A.: Expertise Recommender: A Flexible Recommendation System and Architecture. In: Proceedings of the 2000 ACM conference on Computer Supported Cooperative Work (CSCW 2000), Philadelphia, pp. 231–240. ACM Press, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Kautz, H., Selman, B., Shah, M.: ReferralWeb: Combining Social Networks and Collaborative Filtering. Communications of the ACM 40(3), 63–65 (1997)CrossRefGoogle Scholar
  7. 7.
    Thompson, C., Göker, M., Langley, P.: A Personalized System for Conversational Recommendations. Journal of Artificial Intelligence Research (JAIR) 21, 393–428 (2004)Google Scholar
  8. 8.
    Bridge, D., Göker, M., McGinthy, L., Smyth, B.: Case-based Recommender Systems, The Knowledge Engineering Review. Cambridge University Press, Cambridge (to appear, 2006)Google Scholar
  9. 9.
    Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12(4), 331–370Google Scholar
  10. 10.
    Göker, M.: Dimensions of Personalization and their Effect on the Knowledge Containers in a CBR system. In: Göker, M. (ed.) Proceedings, Workshop on Case Based Reasoning and Personalization. at the 6th European Conference on Case Based Reasoning, Aberdeen, Scotland, September 4 (2002)Google Scholar
  11. 11.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  12. 12.
    Schütze, H., Pedersen, J.: A cooccurrence-based thesaurus and two applications to information retrieval. Information Processing and Management 33(3), 307–318 (1997)CrossRefGoogle Scholar
  13. 13.
    Jing, Y., Croft, B.: An Association Thesaurus for Information Retrieval. In: Proceedings of {RIAO} 1994, 4th International Conference Recherche d’Information Assistee par Ordinateur, New York, pp. 146–160 (1994)Google Scholar
  14. 14.
    Nobesawa, S., Tsutsumi, J., Jiang, S., Sano, T., Sato, K., Nakanishi, M.: Segmenting Sentences into Linky Strings using D-bigram statistics. In: COLING, Copenhagen (1996)Google Scholar
  15. 15.
    Lenz, M., Burkhard, H.D.: Case Retieval Nets: Basic ideas and extensions. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 227–239. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Resnik, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation Systems. Communications of the ACM 43(12), 45–48 (2000)CrossRefGoogle Scholar
  17. 17.
    Beenen, G., Laing, K., Wang, X., Chang, K., Frankowski, D., Resnick, P., Kraut, R.: Using Social Psychology to Motivate Contributions to Online Communities. In: Proceedings of the CSCW 2004, Chicago, Ill. ACM Press, New York (2004)Google Scholar
  18. 18.
    McDonald, D.: Recommending Collaboration with Social Networks: A Comparative Evaluation. In: Proceedings of CHI 2003, Ft. Lauderdale. ACM Press, New York (2003)Google Scholar
  19. 19.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mehmet H. Göker
    • 1
  • Cynthia Thompson
    • 1
  • Simo Arajärvi
    • 1
  • Kevin Hua
    • 1
  1. 1.PricewaterhouseCoopers LLP, Center for Advanced ResearchSan JoseUSA

Personalised recommendations