Advertisement

Retrieval over Conceptual Structures

  • Pablo Beltrán-Ferruz
  • Belén Díaz-Agudo
  • Oscar Lagerquist
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)

Abstract

The aim of the research conducted is to investigate how the knowledge in Ontologies can be used to acquire and refine the weights required in Case Retrieval Networks (CRNs). CRNs are designed to perform efficient retrieval processes even in large case bases but they lack from the flexibility and over restrict the circumstances under which the cases are retrieved. We investigate how ontologies can be used to relax these restrictions. We propose a retrieval method where the cases are embedded in a CRN but the weights are dynamically computed using the knowledge from the domain ontology and from the query description.

Keywords

Description Logic Conceptual Structure Case Base Reasoning Domain Ontology Retrieval Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Scheneider, P. (eds.): The Description Logic Handbook (2005)Google Scholar
  2. 2.
    Díaz-Agudo, B., González-Calero, P.A.: Classification based retrieval using formal concept analysis. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 173–188. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Díaz-Agudo, B., González-Calero, P.A.: A declarative similarity framework for knowledge intensive CBR. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 158–172. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Díaz-Agudo, B., González-Calero, P.A.: An architecture for knowledge intensive cbr systems. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 37–48. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Díaz-Agudo, B., Gonz’alez-Calero, P.A.: Knowledge intensive CBR through ontologies (2001)Google Scholar
  6. 6.
    González-Calero, P.: Aplicación de técnicas basadas en conocimiento como soporte a la reutilización en bibliotecas orientadas a objetos. Ph.D Dissertation. Departamento de Informática y Automática, Universidad Complutense de Madrid (1997)Google Scholar
  7. 7.
    Gonzalez-Calero, P., Diaz-Agudo, B., Gomez, M.: Applying DLs for retrieval in case-based reasoning. In: Procs of the Description Logics International Workshop (DL 1999) (1999)Google Scholar
  8. 8.
    Hervás, R., Gervás, P.: Case retrieval nets for heuristic lexicalization in natural language generation. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS, vol. 3808, pp. 55–66. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kamp, G.: Using description logics for knowledge intensive case-based reasoning. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 204–218. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Koehler, J.: An application of terminological logics to case-based reasoning. In: Proceedings of Knowledge Representation KR 1994 (1994)Google Scholar
  11. 11.
    Lenz, M.: Case retrieval nets as a model for building flexible information systems. Ph.D thesis, mathematisch-naturwissenschaftliche fakultat ii der humboldt-universitat zu berlin (1999)Google Scholar
  12. 12.
    Lenz, M., Burkhard, H.-D.: Case retrieval nets: Basic ideas and extensions. In: KI - Kunstliche Intelligenz, pp. 227–239 (1996)Google Scholar
  13. 13.
    Lenz, M., Burkhard, H.-D., Brückner, S.: Applying case retrieval nets to diagnostic tasks in technical domains. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 219–233. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Napoli, A., Lieber, J., Simon, A.: A classification-based approach to case-based reasoning (1997)Google Scholar
  15. 15.
    Web ontology language, http://www.w3.org/2004/OWL/
  16. 16.
    Recio, J.A., Sánchez, A., Díaz-Agudo, B., González-Calero, P. (eds.): jCOLIBRI 1.0 in a nutshell. A software tool for designing CBR systems, Cambridge, UK (2005), http://ukcbr.org.uk/
  17. 17.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Procs. IJCAI 1995 (1995)Google Scholar
  18. 18.
    Salotti, S., Ventos, V.: Study and formalization of a case-based reasoning system using a description logic. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 286–297. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval (1983)Google Scholar
  20. 20.
    Yen, J., Teh, H., Liu, X.: Using description logics for software reuse and case-based reasoning. In: Procedings of Description Logics Workshop DL 1994 (1994) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pablo Beltrán-Ferruz
    • 1
  • Belén Díaz-Agudo
    • 1
  • Oscar Lagerquist
    • 1
  1. 1.Dep. Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridSpain

Personalised recommendations