Advertisement

Case Factory – Maintaining Experience to Learn

  • Klaus-Dieter Althoff
  • Alexandre Hanft
  • Martin Schaaf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)

Abstract

In this paper, we outline our vision of a case factory that deals with developing (future) knowledge-based systems. The functionality of such a system is provided by different kinds of agents. We focus especially on case-based-reasoning agents, which play an important part within our vision and the corresponding architecture. Our method of constructing a case-based reasoning system using agents is based on integration with the experience factory approach. We define a single architecture adopting ideas from the concept of software product-lines with a focus on combining technical and organizational knowledge. Finally, the paper closes with a brief overview of the current state of our work and a conceptual evaluation of its components with respect to related work.

Keywords

Experience Factory Multiagent System Software Architecture Software Agent Software Product Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aamodt, A.: Invited Talk at ECCBR 2004 in Madrid (2004)Google Scholar
  2. 2.
    Aamodt, A.: Robust expert systems that learn from experience An architectural frame-work. In: EKAW 1989, Third European Knowledge Acquisition for Knowledge-based Systems Workshop, Paris, July 1989, pp. 311–326 (1989)Google Scholar
  3. 3.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-tions, and system approaches. AI Communications 7(1), 39–59 (1994)MATHGoogle Scholar
  4. 4.
    Aamodt, A.: A knowledge-intensive, integrated approachto problem solving and sustained learning, Ph.D (Dr.Ing.) dissertation, University of Trondheim, Norwegian Institute ofTechnology, Department of Computer Science, May 1991. University Microfilms PUB92-08460 (1992)Google Scholar
  5. 5.
    Aha, D.W.: The AAAI 1999 KM/CBR Workshop: Summary of Contributions. In: Proc. ICCBR 1999 Workshops, II-37–II-44. Technical Report, LSA-99-03E, TU, Kaiserslautern (1999)Google Scholar
  6. 6.
    Althoff, K.-D., Nick, M.: How to Support Experience Management with Evaluation – Foundations, Evaluation Methods, and Examples for Case-Based Reasoning and Experience Factory. Lecture Notes of Computer Science/Artificial Intelligence. Springer, Berlin (in progress, 2006)Google Scholar
  7. 7.
    Althoff, K.-D., Mänz, J., Nick, M.: Maintaining Experience to Learn: Case Studies on Case-Based Reasoning and Experience Factory. In: Proc. 6th Workshop Days of the German Computer Science Society (GI) on Learning, Knowledge, and Adaptivity (LWA 2005) Workshop on Machine Learning, Knowledge Discovery, and Data Mining, Saarland University, Germany (October 2005)Google Scholar
  8. 8.
    Althoff, K.-D.: Case-Based Reasoning. In: Chang, S.K. (ed.) Handbook on Software Engineering and Knowledge Engineering, vol. 1, pp. 549–587. World Scientific, Singapore (2001)Google Scholar
  9. 9.
    Althoff, K.-D., Birk, A., von Gresse Wangenheim, C., Tautz, C.: Case-Based Reasoning for Experimental Software Engineering. In: [36], pp. 235–254 (1998)Google Scholar
  10. 10.
    Althoff, K.-D.: Evaluating Case-Based Reasoning Systems: The INRECA Case Study. Habilitation treatise, Department of Computer Science, University of Kaiserslautern (1997)Google Scholar
  11. 11.
    Althoff, K.-D., Aamodt, A.: Relating case-based problem solving and learning methods to task and domain characteristics: towards an analytic framework. AI Communications 9(3), 1–8 (1996)Google Scholar
  12. 12.
    Althoff, K.-D., Auriol, E., Barletta, R., Manago, M.: A Review of Industrial Case-Based Reasoning Tools. AI Perspectives Report, AI Intelligence, Oxford, UK (1995)Google Scholar
  13. 13.
    Althoff, K.-D., Kockskämper, S., Maurer, F., Stadler, M., Wess, S.: Ein System zur fallbasierten Wissensverarbeitung in technischen Diagnosesituationen. In: Retti, J., Leidlmeier, K. (eds.) 5th Austrian AI-Conference, pp. 65–70. Springer, Heidelberg (1989)Google Scholar
  14. 14.
    Bartsch-Spörl, B.: Ansätze zur Behandlung von fallorientiertem Erfahrungswissen in Expertensystemen. KI 4, 32–36 (1987)Google Scholar
  15. 15.
    Arcos, J.L., Plaza, E.: Noos: an integrated framework for problem solving and learning. In: Proceedings of the KEML 1997. 7th Workshop on Knowledge Engineering: Methods and Languages, England (IIIA-RR-97-02) (1997)Google Scholar
  16. 16.
    Basili, V.R., Caldiera, G., Rombach, H.D.: Experience Factory. In: Marciniak, J.J. (ed.) Encyclopedia of SE, vol. 1, pp. 469–476. John Wiley & Sons, Chichester (1994)Google Scholar
  17. 17.
    Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. In: Marciniak, J.J. (ed.) Encyclopedia of SE, vol. 1, pp. 528–532. Wiley & Sons, Chichester (1994)Google Scholar
  18. 18.
    Basili, V.R., Rombach, H.D.: The TAME Project: Towards improvement-oriented soft-ware environments. IEEE Transactions on SE SE-14(6), 758–773 (1988)CrossRefGoogle Scholar
  19. 19.
    Basili, V.R.: Quantitative evaluation of software methodology. In: Proceedings of the First Pan-Pacific Computer Conference, Melbourne, Australia (September 1985)Google Scholar
  20. 20.
    Bergmann, R., Althoff, K.-D., Breen, S., Göker, M.H., Manago, M., Traphöner, R., Wess, S.: Developing Industrial Case-Based Reasoning Applications. LNCS (LNAI), vol. 1612. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Bullinger, H.-J., Ilg, R.: Leben und Arbeiten in einer vernetzten, mobilen Welt. In: Uhr, W., Esswein, W., Schoop, E. (eds.) Wirtschaftsinformatik 2003 Band I, pp. 1–8. Physica Verlag, Heidelberg (2003)Google Scholar
  22. 22.
    Bundesministerium für Forschung und Technologie, Bekanntmachung über die Förderung von Forschungsvorhaben auf dem Gebiet Wissensintensive Dienstleistungen, January 14 (2000)Google Scholar
  23. 23.
    Bibel, W., Andler, D., Da Costa, O., Küppers, G., Pearson, I.D.: Converging Technologies and the Natural, Social and Cultural World. Report of the EU High Level Expert Group on Forsighting the New Technology Wave (FoNTWave), June 30 (2004)Google Scholar
  24. 24.
    Brasse, C., Uhlmann, M.: Integration von Erfahrungswissen. In: [32], pp. S121–S132Google Scholar
  25. 25.
    Burkhard, H.-D.: Software-Agenten. In: Görz, G., Rollinger, C.-R., Schneeberger, J. (eds.) Handbuch der Künstlichen Intelligenz, 4. Auflage, pp. S943–S1020 (2003)Google Scholar
  26. 26.
    Cramer, J.: Management wissensintensiver Dienstleistungen. In: [32], pp. S179–S203Google Scholar
  27. 27.
    Decker, B., Althoff, K.-D.: Prozesslernen und Erfahrungsmanagement: Ergebnisse aus dem indiGo-Projekt. In: Proc. Lernen - Wissen – Adaptivität (LWA 2004), pp. 138–145 (2004)Google Scholar
  28. 28.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Lejten, J., Burgelman, J.-C.: Scenarios of Ambient Intelligence in 2010. IST Advisory Group (ISTAG), European Commission Community Research (2001)Google Scholar
  29. 29.
    Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series (1997)Google Scholar
  30. 30.
    Hanft, A., Minor, M.: A Low-Effort, Collaborative Maintenance Model for Textual CBR. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620. Springer, Heidelberg (2005)Google Scholar
  31. 31.
    Hanft, A.: Collaborative Maintenance in einem FBS System, diploma thesis, Humboldt University of Berlin, Berlin (2004)Google Scholar
  32. 32.
    Hermann, S. (Hrsg.): Integrierter Schlussbericht - Verbundprojekt SIAM, Strategien, Instrumente und arbeitsorganisatorische Gestaltungsmodelle zur Förderung der Dienstleistungskompetenz in Unternehmen (2003) (Accessed on October 20, 2005), http://www.siam.iao.fraunhofer.de/intern/intern-berichte/siam-schlussbericht-final.doc
  33. 33.
    Hermann, S.: Produktive Wissensarbeit – Eine Herausforderung. In: [32], pp. S204–S224Google Scholar
  34. 34.
    JADE: Java Agent Development Framework (visited on February 6, 2006), http://jade.tilab.com/
  35. 35.
    Kiehl, M.: Arbeitsmarktentwicklung und wissensintensive Dienstleistungen im östlichen Ruhrgebiet. Universität Dortmund, LS VWL, insb. Raumwirtschaftspolitik, Arbeitskreis Strukturpolitik, June 12 (2003)Google Scholar
  36. 36.
    Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)Google Scholar
  37. 37.
    Muthig, D.: Systematischer Aufbau und Einsatz von Wissen zur effizienten Entwicklung von Software-Varianten. KI (2), 5–11 (2005)Google Scholar
  38. 38.
    Nick, M.: Experience Maintenance through Closed-Loop Feedback. Ph.D Thesis, Department of Computer Science, University of Kaiserslautern (2005)Google Scholar
  39. 39.
    Nick, M., Althoff, K.-D., Tautz, C.: Systematic Maintenance of Corporate Experince Repositories. Computational Intelligence 17(2), 364 (2001)CrossRefMATHGoogle Scholar
  40. 40.
    Plaza, E., Aamodt, A., Ram, A., van de Velde, W., van Someren, M.: Integrated learning architectures. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 429–441. Springer, Heidelberg (1993), http://www.iiia.csic.es/People/enric/ila.html Google Scholar
  41. 41.
    Puppe, F.: Knowledge reuse among diagnostic problem-solving methods in the Shell-Kit D3. Int. Journal of Human Computer Studies 49(4), 627–649 (1998)CrossRefGoogle Scholar
  42. 42.
    Rech, J., Althoff, K.-D.: Artificial Intelligence and Software Engineering Status and Future Trends. Special Issue on Artificial Intelligence and Software Engineering, KI (3), 5–11 (2004)Google Scholar
  43. 43.
    Roth-Berghofer Thomas, R.: Knowledge Maintenance of Case-Based Reasoning Systems – The SIAM Methodology, dissertation at University of Kaiserslautern, available as DISKI 262, Akademische Verlagsgesellschaft GmbH, Berlin (2003)Google Scholar
  44. 44.
    Schmid, K.: Systematische Wiederverwendung im Produktlinienumfeld – Ein Enscheidungs problem. Special Issue on Artificial Intelligence & Software Engineering, KI (3), 33–35 (2004)Google Scholar
  45. 45.
    Schmid, K.: Planning Software Reuse — A Disciplined Scoping Approach for Software Product Lines. Ph.D thesis, University of Kaiserslautern. IRB Verlag (2002)Google Scholar
  46. 46.
    Schank, R.C.: Dynamic Memory: A Theory of Learning in Computers and People. Cambridge University Press, Cambridge (1982)Google Scholar
  47. 47.
    Tautz, C., Althoff, K.-D.: A Case Study on Engineering Ontologies and Related Processes for Sharing Software Engineering Experience. In: Proc. 12th International Conference on Software Engineering and Knowledge Engineering (SEKE 2000) (2000)Google Scholar
  48. 48.
    Tautz, C.: Customizing Software Engineering Experience Management Systems to Organizational Needs. Ph.D Thesis, Department of Computer Science, University of Kaiserslautern. Fraunhofer IRB Verlag (2000)Google Scholar
  49. 49.
    Watson, I. (ed.): Applying Knowledge Management: techniques for building corporate memories. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  50. 50.
    Web Service Standardization (visited on February 6, 2006), http://www.w3.org/
  51. 51.
    Weiß, G. (ed.): Multiagent systems. A modern approach to distributed artificial intelligence. The MIT Press, Cambridge (1999)Google Scholar
  52. 52.
    Wess, S.: Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entscheidungsunterstützung und Diagnostik, Dissertation, Department of Computer Science, University of Kaiserslautern, available as DISKI 126. infix Verlag (1995)Google Scholar
  53. 53.
    Willke, H.: Organisierte Wissensarbeit. In: Zeitschrift für Soziologie, vol. 3, pp. 161–177 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Klaus-Dieter Althoff
    • 1
  • Alexandre Hanft
    • 1
  • Martin Schaaf
    • 1
  1. 1.Institute of Computer Science, Intelligent Information Systems LabUniversity of HildesheimHildesheimGermany

Personalised recommendations