Finding Similar Deductive Consequences – A New Search-Based Framework for Unified Reasoning from Cases and General Knowledge

  • Ralph Bergmann
  • Babak Mougouie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)


While reasoning with cases is usually done in a similarity-based manner, additional general knowledge is often represented in rules, constraints, or ontology definitions and is applied in a deductive reasoning process. This paper presents a new view on the combination of deductive and similarity-based reasoning, which is embedded in the CBR context. The basic idea is to view general knowledge and cases as a logical theory of a domain. Similarity-based reasoning is introduced as search for the most similar element in the deductive closure of the domain theory. We elaborate this approach and introduce several related search algorithms, which are analyzed in an experimental study. Further, we show how several previous approaches for using general knowledge in CBR can be mapped to our new view.


Horn Clause Domain Theory Beam Search Transformational Adaptation Deductive Closure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A.: A Knowledge-Intensive, Integrated Approach to Problem Solving and Sustained Learning. Ph.D thesis, University of Trondheim (1991)Google Scholar
  2. 2.
    Aamodt, A.: Knowledge-intensive case-based reasoning in creek. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bergmann, R., Schaaf, M.: Structural Case-Based Reasoning and Ontology-based Knowledge Managemenet: A Perfect Match? Journal of Universal Computer Science 9(7) (2003)Google Scholar
  4. 4.
    Bergmann, R., Vollrath, I.: Generalized cases: Representation and steps towards efficient similarity assessment. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Bergmann, R., Wilke, W.: Towards a new formal model of transformational adaptation in case-based reasoning. In: European Conference on Artificial Intelligence (ECAI 1998) (1998)Google Scholar
  6. 6.
    Bergmann, R., Wilke, W., Vollrath, I., Wess, S.: Integrating general knowledge with object-oriented case representation and reasoning. In: Burkhard, H.D., Lenz, M. (eds.) 4th German Workshop on CBR, pp. 120–127. Humboldt University, Berlin (1996)Google Scholar
  7. 7.
    Diaz-Agudo, B., Gonzalez-Calero, P.A.: An architecture for knowledge intensive cbr systems. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 37–48. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Fuchs, B., Lieber, J., Mille, A., Napoli, A.: Towards a unified theory of adaptation in case-based reasoning. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 104–117. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Lenz, M., Burkhard, H.D.: Case Retrieval Nets: Foundations, properties, implementation, and results. Technical report, Humboldt University, Berlin (1996)Google Scholar
  10. 10.
    Michalski, R.: Inferential theory of learning. In: Michalski, R., Tecuci, G. (eds.) Machine Learning – A Multistrategy Approach. Morgan Kaufmann, San Francisco (1994)Google Scholar
  11. 11.
    Mougouie, B., Bergmann, R.: Similarity assessment for generalized cases by optimization methods. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 249–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Plaza, E., Arcos, J.-L.: Constructive adaptation. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 306–320. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Purvis, L., Pu, P.: Adaptation using constraint satisfaction techniques. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 289–300. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Richter, M.M.: Logic and approximation in knowledge based systems. In: Lenski, W. (ed.) Logic vs. Approximation – Essays Dedicated to Michael M. Richter on the Occasion of his 65th Birthday, pp. 184–203. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Richter, M.M.: Fallbasiertes Schliessen. Informatik Spektrum 3(26), 180–190 (2003)Google Scholar
  16. 16.
    Smyth, B., Keane, M.: Retrieving adaptable cases. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS (LNAI), vol. 837, pp. 209–220. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Stahl, A., Bergmann, R.: Applying recursive CBR for the customization of structured products in an electronic shop. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Tartakovski, A., Schaaf, M., Bergmann, R.: Retrieval and configuration of life insurance policies. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 552–565. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Tartakovski, A., Schaaf, M., Maximini, R., Bergmann, R.: Minlp based retrieval of generalized cases. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 404–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ralph Bergmann
    • 1
  • Babak Mougouie
    • 1
  1. 1.Department of Business Information Systems IIUniversity of TrierTrierGermany

Personalised recommendations