Improving Annotation in the Semantic Web and Case Authoring in Textual CBR

  • Juan A. Recio-García
  • Marco A. Gómez-Martín
  • Belén Díaz-Agudo
  • Pedro A. González-Calero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)


This paper describes our work in textual Case-Based Reasoning within the context of Semantic Web. Semantic Annotation of plain texts is one of the core challenges for building the Semantic Web. We have used different techniques to annotate web pages with domain ontologies to facilitate semantic retrieval over the web. Typical similarity matching techniques borrowed from CBR can be applied to retrieve these annotated pages as cases. We compare different approaches to do such annotation process: manually, automatically based on Information Extraction (IE) rules, and completing the IE rules within the rules that result from the application of Formal Concept Analysis over a set of manually annotated cases. We have made our experiments using the textual CBR extension of the jCOLIBRI framework.


Association Rule Information Extraction Domain Ontology Plain Text Semantic Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web (2001)Google Scholar
  2. 2.
    Branting, L.K., Weber, R. (eds.): Textual Case-Based Reasoning Workshop, at the 6th International Conference on Case-Based Reasoning, Chicago, IL, USA (August 2005)Google Scholar
  3. 3.
    Brüninghaus, S., Ashley, K.D.: The role of information extraction for textual CBR. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 74–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Connolly, D., Harmelen, F.v., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: DAML+OIL Reference Description. World Wide Web Consortium (March 2001)Google Scholar
  5. 5.
    Cunningham, C., Weber, R., Proctor, J.M., Fowler, C., Murphy, M.: Investigating graphs in textual case-based reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 573–587. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Díaz-Agudo, B., González-Calero, P.A.: Formal Concept Analysis as a Support Technique for CBR. Knowledge-Based Systems 14(3-4), 163–172 (2001)CrossRefGoogle Scholar
  7. 7.
    Erdmann, M., Maedche, A., Schnurr, H.P., Staab, S.: From manual to semi-automatic semantic annotation: About ontology-based text annotation tools. ETAI Journal - Section on Semantic Web (Linköping Electronic Articles in Computer and Information Science) 6(2) (2001)Google Scholar
  8. 8.
    Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.): ISWC 2005. LNCS, vol. 3729. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humanies 95, 5–18 (1986)MathSciNetGoogle Scholar
  10. 10.
    Gupta, K.M.: The role of generative ontologies in textual CBR. In: The Textual CBR Workshop at the 6th International Conference on Case-Based Reasoning, Chicago, IL (2005) (invited talk)Google Scholar
  11. 11.
    Handschuh, S., Staab, S. (eds.): Annotation for the semantic Web. IOS Press, Amsterdam (2003)MATHGoogle Scholar
  12. 12.
    Kushmerick, N., Weld, D., Doorenbos, R.: Wrapper induction for information extraction. In: Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 1997, Nagoya, Japan, pp. 729–737. Morgan Kaufmann, San Francisco (1997)Google Scholar
  13. 13.
    Lenz, M.: Defining knowledge layers for textual case-based reasoning. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 298–309. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Lenz, M.: Knowledge sources for textual CBR applications. In: Lenz, M., Ashley, K. (eds.) AAAI 1998 Workshop on Textual Case-Based Reasoning, pp. 24–29. AAAI Press, Menlo Park (1998)CrossRefGoogle Scholar
  15. 15.
    Luxenburguer, M.: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 113(29), 35–55 (1991)Google Scholar
  16. 16.
    Recio, J.A., Díaz-Agudo, B., Gómez-Martín, M.A., Wiratunga, N.: Extending jCOLIBRI for textual CBR. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 421–435. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Semantic web annotation and authoring,
  18. 18.
    Wille, R.: Restructuring Lattice Theory: an approach based on hierarchies of concepts. Ordered Sets (1982)Google Scholar
  19. 19.
    Wolff, K.E.: A first course in formal concept analysis. How to understand line diagrams. In: Faulbaum, F. (ed.) SoftStat, Advanced in Statistical Software, pp. 429–438. Gustav Fischer Verlag (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juan A. Recio-García
    • 1
  • Marco A. Gómez-Martín
    • 1
  • Belén Díaz-Agudo
    • 1
  • Pedro A. González-Calero
    • 1
  1. 1.Dep. Sistemas Informáticos y ProgramaciónUniversidad Complutense de MadridSpain

Personalised recommendations