The Needs of the Many: A Case-Based Group Recommender System

  • Kevin McCarthy
  • Lorraine McGinty
  • Barry Smyth
  • Maria Salamó
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)


While much of the research in the area of recommender systems has focused on making recommendations to the individual, many recommendation scenarios involve groups of inter-related users. In this paper we consider the challenges presented by the latter scenario. We introduce a (case-based) group recommender designed to meet these challenges through a variety of recommendation features, including the generation of reactive and proactive suggestions based on user feedback in the form of critiques, and demonstrate its effectiveness through a live-user case-study.


Recommender System Preference Model Group Preference Group Recommender Mutual Awareness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burke, R.: Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial Intelligence Review 18(3-4), 245–267 (2002)CrossRefGoogle Scholar
  2. 2.
    Burke, R., Hammond, K., Young, B.C.: The FindMe Approach to Assisted Browsing. Journal of IEEE Expert 12(4), 32–40 (1997)CrossRefGoogle Scholar
  3. 3.
    Delgado, J., Davidson, R.: Knowledge Bases and User Profiling in Travel and Hospitality Recommender Systems. In: Proceedings of the ENTER 2002 Conference, Innsbruck, Austria, pp. 1–16. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Design Example-Critiquing Interaction. In: Proceedings of the International Conference on Intelligent User Interface(IUI-2004), Funchal, Madeira, Portugal, pp. 22–29. ACM Press, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Jameson, A.: More than the sum of its members: Challenges for group recommender systems. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, pp. 48–54 (2004)Google Scholar
  6. 6.
    Jameson, A., Baldes, S., Kleinbauer, T.: Enhancing mutual awareness in group recommender systems. In: Mobasher, B., Anand, S.S. (eds.) Proceedings of the IJCAI 2003 Workshop on Intelligent Techniques for Web Personalization. AAAI, Menlo Park (2003)Google Scholar
  7. 7.
    McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: CATS: A Synchronous Approach to Collaborative Group Recommendation. In: Proceedings of the FLAIRS 2006 Conference, Florida, USA, pp. 1–16. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    McGinty, L., Smyth, B.: Tweaking Critiquing. In: Proceedings of the Workshop on Personalization and Web Techniques at the International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Nguyen, Q.N., Ricci, F., Cavada, D.: User Preferences Initialization and Integration in Critique-Based Mobile Recommender Systems. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 71–78. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Pu, P., Faltings, B.: Decision Tradeoff Using Example Critiquing and Constraint Programming. Special Issue on User-Interaction in Constraint Satisfaction. CONSTRAINTS: an International Journal 9(4) (2004)Google Scholar
  11. 11.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic Critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In: Bramer, M., Coenen, F., Allen, T. (eds.) AI 2004, pp. 101–114. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Ricci, F., Woeber, K., Zins, A.: Recommendations by Collaborative Browsing. In: Proceedings of the 12th International Conference on Information and Communication Technologies in Travel & Tourism (ENTER 2005), Innsbruck, Austria, pp. 172–182. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Sherin, S., Lieberman, H.: Intelligent Profiling by Example. In: Proceedings of the International Conference on Intelligent User Interfaces (IUI 2001), Santa Fe, NM, US, pp. 145–152. ACM Press, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Stolze, M.: Soft Navigation in Electronic Product Catalogs. International Journal on Digital Libraries 3(1), 60–66 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kevin McCarthy
    • 1
  • Lorraine McGinty
    • 1
  • Barry Smyth
    • 1
  • Maria Salamó
    • 1
  1. 1.Adaptive Information Cluster, School of Computer Science & InformaticsUniversity College DublinDublin 4Ireland

Personalised recommendations