Generalizing Newman’s Lemma for Left-Linear Rewrite Systems

  • Bernhard Gramlich
  • Salvador Lucas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)


Confluence criteria for non-terminating rewrite systems are known to be rare and notoriously difficult to obtain. Here we prove a new result in this direction. Our main result is a generalized version of Newman’s Lemma for left-linear term rewriting systems that does not need a full termination assumption. We discuss its relationships to previous confluence criteria, its restrictions, examples of application as well as open problems. The whole approach is developed in the (more general) framework of context-sensitive rewriting which thus turns out to be useful also for ordinary (context-free) rewriting.


Normal Form Reduction Step Critical Pair Reduction Graph Critical Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term rewriting and All That. Cambridge Univ. Press, Cambridge (1998)Google Scholar
  2. 2.
    Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55. Cambridge Univ. Press, Cambridge (2003)Google Scholar
  3. 3.
    Borralleras, C., Lucas, S., Rubio, A.: Recursive path orderings can be context-sensitive. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 314–331. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Dershowitz, N., Kaplan, S., Plaisted, D.A.: Rewrite, rewrite, rewrite, rewrite, rewrite,.. Theoretical Computer Science 83(1), 71–96 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Giesl, J., Middeldorp, A.: Transformation techniques for context-sensitive rewrite systems. Journal of Functional Programming 14(4), 379–427 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Godoy, G., Tiwari, A.: Confluence of Shallow Right-Linear Rewrite Systems. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 541–556. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Godoy, G., Tiwari, A., Verma, R.M.: On the confluence of linear shallow term rewrite systems. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 85–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Gramlich, B.: Confluence without termination via parallel critical pairs. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 211–225. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Gramlich, B., Lucas, S.: Modular termination of context-sensitive rewriting. In: Kirchner, C. (ed.) Proc. 4th PPDP, Pittsburgh, PA, USA, pp. 50–61. ACM Press, New York (2002)Google Scholar
  10. 10.
    Hindley, J.R.: An abstract Church–Rosser theorem, part ii: Applications. Journal of Symbolic Logic 39, 1–21 (1974)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM 27(4), 797–821 (1980)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.-J.: Transfinite reductions in orthogonal term rewriting systems. Information and Computation 119(1), 18–38 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, ch. 1, vol. 1, pp. 2–117. Clarendon Press, Oxford (1992)Google Scholar
  14. 14.
    Klop, J.W., Middeldorp, A., Toyama, Y., de Vrijer, R.: Modularity of confluence: A simplified proof. Information Processing Letters 49, 101–109 (1994)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Google Scholar
  16. 16.
    Lucas, S.: Transfinite rewriting semantics for term rewriting systems. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 216–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Lucas, S.: Context-sensitive rewriting strategies. Information and Computation 178(1), 294–343 (2002)MATHMathSciNetGoogle Scholar
  18. 18.
    Lucas, S.: Polynomials over the reals in proofs of termination: From theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Newman, M.H.A.: On theories with a combinatorial definition of equivalence. Annals of Mathematics 43(2), 223–242 (1942)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ohlebusch, E.: Modular properties of composable term rewriting systems. Journal of Symbolic Computation 20(1), 1–42 (1995)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Okui, S.: Simultaneous critical pairs and Church-Rosser property. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 2–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    van Oostrom, V.: Confluence by decreasing diagrams. Theoretical Computer Science 126(2), 259–280 (1994)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    van Oostrom, V.: Developing developments. Theoretical Computer Science 175(1), 159–181 (1997)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Oyamaguchi, M., Ohta, Y.: A new parallel closed condition for Church–Rosser of left-linear term rewriting systems. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 187–201. Springer, Heidelberg (1997)Google Scholar
  25. 25.
    Raoult, J.C., Vuillemin, J.: Operational and semantic equivalence between recursive programs. Journal of the ACM 27(4), 772–796 (1980)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Rosen, B.K.: Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM 20, 160–187 (1973)MATHCrossRefGoogle Scholar
  27. 27.
    Toyama, Y.: On the Church–Rosser property of term rewriting systems. ECL Technical Report 17672, NTT (in Japanese) (December 1981)Google Scholar
  28. 28.
    Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting systems. Journal of the ACM 34(1), 128–143 (1987)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Toyama, Y., Oyamaguchi, M.: Church–Rosser property and unique normal form property of non-duplicating term rewriting systems. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 316–331. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bernhard Gramlich
    • 1
  • Salvador Lucas
    • 2
  1. 1.Fakultät für InformatikTechnische Universität WienWienAustria
  2. 2.DSIC, Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations