Higher-Order Orderings for Normal Rewriting

  • Jean-Pierre Jouannaud
  • Albert Rubio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)


We extend the termination proof methods based on reduction orderings to higher-order rewriting systems à la Nipkow using higher-order pattern matching for firing rules, and accommodate for any use of eta, as a reduction, as an expansion or as an equation. As a main novelty, we provide with a mechanism for transforming any reduction ordering including beta-reduction, such as the higher-order recursive path ordering, into a reduction ordering for proving termination of rewriting à la Nipkow. Non-trivial examples are carried out.


Function Symbol Functional Type Transitive Closure Argument Position Typing Judgement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanqui, F., Jouannaud, J.-P., Okada, M.: The Calculus of Algebraic Constructions. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, p. 301. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Blanqui, F.: Termination and Confluence of Higher-Order Rewriting Systems. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Blanqui, F., Jouannaud, J.-P., Okada, M.: Inductive Data Type Systems. Theoretical Computer Science 272(1-2), 41–68 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barendregt, H.: Functional Programming and Lambda Calculus. In: [22], pp. 321–364.Google Scholar
  5. 5.
    Barendregt, H.: Typed lambda calculi. In: Abramsky, et al. (eds.) Handbook of Logic in Computer Science. Oxford University Press, Oxford (1993)Google Scholar
  6. 6.
    van de Pol, J.: Termination of Higher-Order Rewrite Systems. PhD thesis, Department of Philosophy, Utrecht University (1996)Google Scholar
  7. 7.
    Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    van de Pol, J., Schwichtenberg, H.: Strict functional for termination proofs. In: Typed Lambda Calculi and Applications, Edinburgh. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: [22], pp. 321–364Google Scholar
  10. 10.
    Jouannaud, J.-P.: Higher-Order rewriting: Framework, Confluence and termination. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 224–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Jouannaud, J.-P., Rubio, A.: The higher-order recursive path ordering. In: Longo, G. (ed.) Fourteenth Annual IEEE Symposium on Logic in Computer Science, Trento, Italy. IEEE Comp. Soc. Press, Los Alamitos (1999)Google Scholar
  12. 12.
    Jouannaud, J.-P., Rubio, A.: Polymorphic Higher-Order Recursive Path Orderings (2005) (Submitted to JACM),
  13. 13.
    Jouannaud, J.-P., Rubio, A.: Higher-Order Orderings for Normal Rewriting (2005) Full version,
  14. 14.
    Jouannaud, J.-P., Rubio, A.: Higher-Order Recursive Path Orderings à la carte (2001),
  15. 15.
    Jouannaud, J.-P., van Raamsdonk, F., Rubio, A.: Higher-order rewriting with types and arities (2005),
  16. 16.
    Klop, J.W.: Combinatory Reduction Relations. In: Mathematical Centre Tracts, vol. 127. Mathematisch Centrum, Amsterdam (1980)Google Scholar
  17. 17.
    Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 2–116. Oxford University Press, Oxford (1992)Google Scholar
  18. 18.
    Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoretical Computer Science 192(1), 3–29 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Miller, D.: A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification. Journal and Logic and Computation 1(4), 497–536 (1991)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nipkow, T.: Higher-order critical pairs. In: 6th IEEE Symp. on Logic in Computer Science, pp. 342–349. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  21. 21.
    Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic and Computer Science. Academic Press, London (1990)Google Scholar
  22. 22.
    van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, vol. B. North-Holland, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Pierre Jouannaud
    • 1
  • Albert Rubio
    • 2
  1. 1.École PolytechniqueLIXPalaiseauFrance
  2. 2.Technical University of CataloniaBarcelonaSpain

Personalised recommendations