Proving Positive Almost Sure Termination Under Strategies

  • Olivier Bournez
  • Florent Garnier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)


In last RTA, we introduced the notion of probabilistic rewrite systems and we gave some conditions entailing termination of those systems within a finite mean number of reduction steps.

Termination was considered under arbitrary unrestricted policies. Policies correspond to strategies for non-probabilistic rewrite systems.

This is often natural or more useful to restrict policies to a subclass. We introduce the notion of positive almost sure termination under strategies, and we provide sufficient criteria to prove termination of a given probabilitic rewrite system under strategies. This is illustrated with several examples.


Model Check Function Versus Probabilistic System Markov Decision Process Stochastic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ieee csma/ca 802.11 working group home page,
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Balbo, G.: Introduction to stochastic Petri nets. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Borovanský, P., Kirchner, C., Kirchner, H.: Controlling Rewriting by Rewriting. In: Meseguer, J. (ed.) Proceedings of 1st International Workshop on Rewriting Logic, Asilomar (CA, USA), September 1996. Electronic Notes in Theoretical Computer Science, vol. 4 (1996)Google Scholar
  5. 5.
    Bournez, O., Garnier, F.: Proving positive almost sure termination. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bournez, O., Hoyrup, M.: Rewriting logic and probabilities. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 61–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bournez, O., Kirchner, C.: Probabilistic rewrite strategies: Applications to ELAN. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 252–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bournez, O., Garnier, F., Kirchner, C.: Termination in finite mean time of a csma/ca rule-based model. Technical report, LORIA, Nancy (2005)Google Scholar
  9. 9.
    Brémaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (2001)Google Scholar
  10. 10.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1998)Google Scholar
  11. 11.
    Fayolle, G., Malyshev, V.A., Menshikov, M.V.: Topics in constructive theory of countable Markov chains. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  12. 12.
    Fissore, O., Gnaedig, I., Kirchner, H.: Simplification and termination of strategies in rule-based languages. In: PPDP 2003: Proceedings of the 5th ACM SIGPLAN international conference on Principles and practice of declaritive programming, pp. 124–135. ACM Press, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Fissore, O., Gnaedig, I., Kirchner, H.: A proof of weak termination providing the right way to terminate. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 356–371. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Foster, F.G.: On the stochastic matrices associated with certain queuing processes. The Annals of Mathematical Statistics 24, 355–360 (1953)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Frühwirth, T., Pierro, A.D., Wiklicky, H.: Toward probabilistic constraint handling rules. In: Abdennadher, S., Frühwirth, T. (eds.) Proceedings of the third Workshop on Rule-Based Constraint Reasoning and Programming (RCoRP 2001), Paphos, Cyprus (December 2001); Under the hospice of the International Conferences in Constraint Programming and Logic ProgrammingGoogle Scholar
  16. 16.
    Hansson, H.: Time and Probability in Formal Design of Distributed Systems. Series in Real-Time Safety Critical Systems. Elsevier, Amsterdam (1994)Google Scholar
  17. 17.
    Hart, S., Sharir, M.: Concurrent probabilistic programs, or: How to schedule if you must. SIAM Journal on Computing 14(4), 991–1012 (1985)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program. ACM Transactions on Programming Languages and Systems 5(3), 356–380 (1983)MATHCrossRefGoogle Scholar
  19. 19.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 200. Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In: LICS, p. 351 (2003)Google Scholar
  22. 22.
    Nirman, K., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for probabilistic distributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: STOC: ACM Symposium on Theory of Computing (STOC) (1983)Google Scholar
  24. 24.
    Pnueli, A., Zuck, L.D.: Probabilistic verification. Information and Computation 103(1), 1–29 (1993)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Puternam, M.L.: Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley series in probability and mathematical statistics. John Wiley & Sons, Chichester (1994)Google Scholar
  26. 26.
    Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal Definitions and Concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 315. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, October 21–23, pp. 327–338 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Florent Garnier
    • 1
  1. 1.LORIA/INRIAVillers lès NancyFrance

Personalised recommendations