Structural Proof Theory as Rewriting

  • J. Espírito Santo
  • M. J. Frade
  • L. Pinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)


The multiary version of the λ-calculus with generalized applications integrates smoothly both a fragment of sequent calculus and the system of natural deduction of von Plato. It is equipped with reduction rules (corresponding to cut-elimination/normalisation rules) and permutation rules, typical of sequent calculus and of natural deduction with generalised elimination rules. We argue that this system is a suitable tool for doing structural proof theory as rewriting. As an illustration, we investigate combinations of reduction and permutation rules and whether these combinations induce rewriting systems which are confluent and terminating. In some cases, the combination allows the simulation of non-terminating reduction sequences known from explicit substitution calculi. In other cases, we succeed in capturing interesting classes of derivations as the normal forms w.r.t. well-behaved combinations of rules. We identify six of these “combined” normal forms, among which are two classes, due to Herbelin and Mints, in bijection with normal, ordinary natural deductions. A computational explanation for the variety of “combined” normal forms is the existence of three ways of expressing multiple application in the calculus.


Normal Form Proof System Multiple Application Reduction Rule Natural Deduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica 60, 107–118 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi. Theoretical Computer Science 212, 141–155 (1999)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Espírito Santo, J.: Conservative extensions of the λ-calculus for the computational interpretation of sequent calculus. PhD thesis, University of Edinburgh (2002), available at:
  4. 4.
    Espírito Santo, J.: An isomorphism between a fragment of sequent calculus and an extension of natural deduction. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 354–366. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Santo, J.E., Pinto, L.: Permutative conversions in intuitionistic multiary sequent calculus with cuts. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 286–300. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Santo, J.E., Pinto, L.: Confluence and strong normalisation of the generalised multiary λ-calculus. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 194–209. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Herbelin, H.: A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic 42, 59–87 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mints, G.: Normal forms for sequent derivations. In: Odifreddi, P. (ed.) Kreiseliana, pp. 469–492. A. K. Peters, Wellesley, Massachusetts (1996)Google Scholar
  10. 10.
    Negri, S., von Plato, J.: Structural Proof Theory, Cambridge (2001)Google Scholar
  11. 11.
    Rose, K.: Explicit substitutions: Tutorial & survey. Technical Report LS-96-3, BRICS (1996)Google Scholar
  12. 12.
    Schwichtenberg, H.: Termination of permutative conversions in intuitionistic gentzen calculi. Theoretical Computer Science 212 (1999)Google Scholar
  13. 13.
    von Plato, J.: Natural deduction with general elimination rules. Annals of Mathematical Logic 40(7), 541–567 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Espírito Santo
    • 1
  • M. J. Frade
    • 2
  • L. Pinto
    • 1
  1. 1.Departamento de MatemáticaUniversidade do MinhoBragaPortugal
  2. 2.Departamento de InformáticaUniversidade do MinhoBragaPortugal

Personalised recommendations